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Kato inequalities.

Formal uniqueness argument
for scalar convection-diffusion PDEs.
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Classical Kato inequalities

Context: estimating |u — &| for two solutions of a PDE like

oy + divF(u) + (—A)°¢(u) =0,
with ¢ continuous, non-decreasing (possibly degenerate on intervals).
Examples: Burgers equation, GPME/FDE, their non-local analogues
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Classical Kato inequalities

Context: estimating |u — 0| for two solutions of a PDE like
oy + divF(u) + (—A)°¢(u) =0,
with ¢ continuous, non-decreasing (possibly degenerate on intervals).
Examples: Burgers equation, GPME/FDE, their non-local analogues
Central tool: the Kato inequality: [T. Kato '72]
A|W| > sign(W) AW in D'(Q)
if Well,(Qand AW e L},(Q).
Generalization [Brézis '84]
AS(W) > S (W)AW in D'(Q)
for S Lipschitz with non-decreasing, piecewise continuous S'.
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Classical Kato inequalities

Context: estimating |u — 0| for two solutions of a PDE like
oy + divF(u) + (—A)°¢(u) =0,
with ¢ continuous, non-decreasing (possibly degenerate on intervals).
Examples: Burgers equation, GPME/FDE, their non-local analogues
Central tool: the Kato inequality: [T. Kato '72]
A|W| > sign(W) AW in D'(Q)
if Well,(Qand AW e L},(Q).
Generalization [Brézis '84]
AS(W) > S'(W)AW in D'(Q)
for S Lipschitz with non-decreasing, piecewise continuous S'.
Idea of the Kato argument in the case W € H} (Q):
AS(W) = div(S'(W)VW) equals (formally) S'(W)AW+S"(W)[VW/|?,

the latter term is > 0.
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The formal “Kato-based” uniqueness argument, and missing details

A local example: consider d;u+divF(u) = Au', for (t,x) € Ry x Q,
with either Q = the whole space or Q2 a bounded domain, with BCs.

e The associated localized L' contraction (“Kato”) ineq. reads :

Ve € D([0, T) x Q)

//\u—u\a,f //S|gn u—0)(F(u) - F(n)) - v
</ /Q\U+—f’+|Af+/Q\U0—Uo|€(O-~)

e L' contraction follows if £(t, x) = 1y 7(t) can be taken hereabove
[0,7)
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The formal “Kato-based” uniqueness argument, and missing details

A local example: consider d;u+divF(u) = Au', for (t,x) € Ry x Q,
with either Q = the whole space or Q2 a bounded domain, with BCs.

e The associated localized L' contraction (“Kato”) ineq. reads :

ve e D([0, T) x Q)

//\u—u\a,f //S|gn u—0)(F(u) - F(n)) - v
</ /Q\U+—f’+|Af+/Q\U0—UO|€(O-~)

e L' contraction follows if £(t, x) = 1y 7(t) can be taken hereabove
[0,7)

Two difficilties addressed in the talk:

¢ Justifying such extended “Kato inequalities”,
(formal: plug sign(u — ) as test function, use chain rules & Kato)

« Exploiting “Kato ineq.” via appropriate sequences (¢5) , &, — 1
(while controlling the contributions of V¢&,, A&p)
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A brief overview of the talk, with highlights

o Kato inequalities for the Laplacian, generalizations.
Formal uniqueness argument and missing details

9 Entropy inequalities and doubling of variables

e Parabolic dissipation in entropy inequalities
(focus on non-local diffusion case, link to kinetic formulation)

0 Up-to-the-boundary Kato inequalities

e Conservation laws in the whole space:
a complex picture, counterexamples to uniqueness

G Convection-diffusion case:
dual problems and weighted estimates

e Uniqueness of L solutions of stationary PM/FD equations



Entropy inequalities.

Kruzhkov doubling of variables.
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Getting “Kato ineqality” via the Kruzhkov-Carrillo approach

Long way to “Kato ineq.”: [Kruzhkov '70], [Carrillo '99]
e Select a set of obvious solutions, i(t, x) = k = const for k € R
e Postulate, via the definition of “entropy solution”, that u fulfills
the localized L' contraction (“Kato”) ineqg. w.r.t. all such @
e Deduce, via the doubling of variables hint, that
“Kato ineq.” holds for any couple u, i of entropy solutions

~» remarkable success for pure hyperbolic case d:u + divF(u) =0
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Getting “Kato ineqality” via the Kruzhkov-Carrillo approach

Long way to “Kato ineq.”: [Kruzhkov '70], [Carrillo '99]
e Select a set of obvious solutions, i(t, x) = k = const for k € R
e Postulate, via the definition of “entropy solution”, that u fulfills
the localized L' contraction (“Kato”) ineqg. w.r.t. all such @
e Deduce, via the doubling of variables hint, that
“Kato ineq.” holds for any couple u, i of entropy solutions

~» remarkable success for pure hyperbolic case d:u + divF(u) =0
NB: “Kato” easily exploited due to finite speed of propagation:

RALT R
/ |uf[1|(T,.)§/ U — O], with L = Lip(F)
J_R-LT J_r

... but, what if F is non-Lipschitz ?
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Getting “Kato ineqality” via the Kruzhkov-Carrillo approach

Long way to “Kato ineq.”: [Kruzhkov '70], [Carrillo '99]
e Select a set of obvious solutions, i(t, x) = k = const for k € R
e Postulate, via the definition of “entropy solution”, that u fulfills
the localized L' contraction (“Kato”) ineqg. w.r.t. all such @
e Deduce, via the doubling of variables hint, that
“Kato ineq.” holds for any couple u, i of entropy solutions

~» remarkable success for pure hyperbolic case d:u + divF(u) =0
NB: “Kato” easily exploited due to finite speed of propagation:

RALT R
/ |uf[1|(T,.)§/ U — O], with L = Lip(F)
J_R-LT J_r

... but, what if F is non-Lipschitz ?

Difficulties in presence of (local or non-local) duffision:

e issues with literature, failure of straightforward variable doubling

e key observation: “parabolic dissipation” should enter entropy ineq.

o the resulting Kato inequalities more difficult to exploit than in the
hyperbolic case, due to the infinite speed of propagation
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Keeping parabolic dissipation.

Kinetic formalism,
local and non-local diffusion cases.
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The failure of straightforward Kruzhkov-like approach

Straightforward entropy inequality:
Or|lu — k| +divsign(u — ) (F(u) — F(0)) < Alg(u) — ¢(k)|
(use Kato on AW, W = ¢(u) — ¢(k) in addition to Kruzhkov tricks)
Difficulty:
While doubling variables (take k = {(s, y)), there arise “cross-terms”
2 Vxop(u(t, x)) Vyod(U(s, ¥)) duit.x)=is.y)
(formal expression). These are uncontrolled.
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The failure of straightforward Kruzhkov-like approach

Straightforward entropy inequality:
Or|lu — k| +divsign(u — ) (F(u) — F(0)) < Alg(u) — ¢(k)|
(use Kato on AW, W = ¢(u) — ¢(k) in addition to Kruzhkov tricks)
Difficulty:
While doubling variables (take k = {(s, y)), there arise “cross-terms
2 Vyo(u(t,x)) Vyo(U(s,y)) dutx=is.y)
(formal expression). These are uncontrolled.

”

Precised entropy inequalities: [Carrillo *99]
Keep track of the remainder in classical Kato inequality for AW:

1
liminf —1 _ \VZ% 2
mint— T ki<a|Vo(U)|

Then the control of the previously uncontrolled terms boils down to
2AB < A? + B A= Vyo(u(t,x)), B=V,p(i(s,y))



[o]e] lelelele)

Keeping track of the parabolic dissipation

Carrillo’s way of keeping parabolic dissipation:

Use Kruzhkov (or semi-Kruzhkov/Serre) singular entropies, keep
. . 1 2
liminf 1 )u(0-ki<al VO(U)

Bendahmane-Karlsen’s way of keeping parabolic dissipation:
Use smooth but general convex entropies 7, just “keep everything”
0" (u(t, x))¢'(u)|Vul?.

More tricky variables’ doubling: [Bendahmane, Karlsen ’05]
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Keeping track of the parabolic dissipation

Carrillo’s way of keeping parabolic dissipation:
Use Kruzhkov (or semi-Kruzhkov/Serre) singular entropies, keep

. . 1 2

liminf 1 )u(0-ki<al VO(U)
Bendahmane-Karlsen’s way of keeping parabolic dissipation:
Use smooth but general convex entropies 7, just “keep everything”

0" (u(t, x))¢'(u)|Vul?.

More tricky variables’ doubling: [Bendahmane, Karlsen ’05]
Alibaud’s way of keeping dissipation for fractional diffusion:
Cut Levi-Khintchine representation formula into regular/singular parts:
w(x + z) — w(x)

dz:/ +v.p
s .t V.p.
RN |z|N+as Jiz|>r \z|<r

keep sign(u — k)(—A)$ ,w in regular part; use (fractional) Kato to
make appear (—A)Z,|w — k|. Tricky variables’ doubling: [Alibaud '07]

(—A)°w = v.p.
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Dissipation and kinetic formulation, the basics

A sharp way of keeping dissipation for fractional diffusion:
Carefully write sign(u — k)(—A)%¢(u) (singularity is not a problem).
~» bypass cutting + variables doubling, if used with kinetic formulation
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Dissipation and kinetic formulation, the basics

A sharp way of keeping dissipation for fractional diffusion:
Carefully write sign(u — k)(—A)%¢(u) (singularity is not a problem).
~» bypass cutting + variables doubling, if used with kinetic formulation

Kinetic formulation in a nutshell:
Given a function u(t, x), one introduces the auxiliary quantity

1, O0<é<u

x(t,x;:€) = x(&, u(t, x)) = {—1, u<é<o

0, otherwise
Key property: for )(.) € Lip, there holds 7(u) = [, 7'(£)x(&, u) d€.
Kinetic formulation for scalar conservation law u; + div f(u) = 0:
Ix(& u) + 1'(€) - Vax(§ u) = 9em

where m = m(t, x; £) is some finite nonnegative measure
responsible for the dissipation of entropy (we need not know m).
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The local degenerate parabolic case

Extension to local degenerate convection-diffusion equation:
us +divf(u)—A¢(u) =0
(and even to anisotropic diffusion case: [Chen, Perthame ’03]).
The kinetic formulation takes the form
Ix(&,u) + (&) - Vax(& u)=¢' (A (& u)] = de(m+n)

where m, n are finite nonnegative measures.
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The local degenerate parabolic case

Extension to local degenerate convection-diffusion equation:
us +divf(u)—A¢(u) =0
(and even to anisotropic diffusion case: [Chen, Perthame ’03]).

The kinetic formulation takes the form

Ix(& u) + 1'(€) - Vax (& u)=¢' (A (& )] = Ie(m+n)
where m, n are finite nonnegative measures.

Moreover, the parabolic dissipation measure n is explicitly given by
n(€) = ¢'(€)|Vu()[* do(u(.) — &) (formal)

Reflects both Carrillo’s and the Bendahmane-Karlsen’s approaches.

Outcome: Full well-posedness for u; + div f(u) — Ag(u) = 0, L' data.
Focus: kinetic formulation techniques [Perthame '02] ~ “Kato ineq” !
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Kinetic dissipation measure of fractional Laplacian, case ¢ = Id

Kinetic formulation with (—A)* diffusion: [Alibaud, A., Ouédraogo '20]
Starting from [Karlsen, Ulusoy '11], for smooth entropies one has

/RN o (u(t, X)) (u(t, x + 2) — u(t, X)) g—ﬂfi dz.
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Kinetic dissipation measure of fractional Laplacian, case ¢ = Id

Kinetic formulation with (—A)* diffusion: [Alibaud, A., Ouédraogo '20]
Starting from [Karlsen, Ulusoy '11], for smooth entropies one has

/RN o (u(t, X)) (u(t, x + 2) — u(t, X)) g—ﬂfi dz.

NB: Elementary Taylor’s identity
Va, b U'(a)(b —a) =n(b) —n(a) — /RTI”(E)\b - E“conv{a;b}(f) d¢.

With singular (Kruzhkov) entropies (" (£) = 260(€ — k)), we guess
the dissipation measure suitable for the fractional Laplacian:
' const
ns(t, x, &) := /

Jan |U(t:X + Z) - E‘1conv{u(tfx),u(t,erz)}(f) W az.

NB The formula makes sense, rigorously, unlike in the local case.
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Kinetic dissipation measure of fractional Laplacian, case ¢ = Id

Kinetic formulation with (—A)* diffusion: [Alibaud, A., Ouédraogo '20]
Starting from [Karlsen, Ulusoy '11], for smooth entropies one has

/RN o (u(t, X)) (u(t, x + 2) — u(t, X)) f;—ﬂfi dz.

NB: Elementary Taylor’s identity
Va, b U'(a)(b —a) =n(b) —n(a) — /RTI”(E)\b - E“conv{a;b}(f) d¢.

With singular (Kruzhkov) entropies (" (£) = 260(€ — k)), we guess
the dissipation measure suitable for the fractional Laplacian:

' const
ns(t~, X, 5) = /RN |U(t:X + Z) - E‘1conv{u(tﬁx),u(t,erz)}(f) W az.

NB The formula makes sense, rigorously, unlike in the local case.
The kinetic formulation with fractional laplacian takes the form

Ix (& u) + 11(€) - Vix(&, u)+(=L)°[x (&, u)] = de(m+ns)
where m, ng are finite nonnegative measures, with ng above.
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Controlling cross-terms with fractional dissipation

From tedious case-by-case observation, we have:

Lemma

There holds

Va,b,c,d e R F(a,b,c,d) < G(a,b,c,d),

F(a7 b7 C, d) = Sign(a - b)Sign(C - d) /R 1conv{a,b} (€)1conv{c,d}(§) d§
G(a,b,0,9) i= [ (1= €66 — )l cona (€
R
+ 10 = €3(¢ — @)1 cone.0) (6) ) -

v

Here, F represents cross-terms (like 2AB in Carrillo’s local case),
while G represents the fractional dissipation terms
made explicit in the kinetic formulation (like A% + B? for the local case).

~» “Kato inequality” recovered from this fractional kinetic formulation
~» we're half-way to uniqueness ?



Up-to-the-boundary
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Up-to-the-boundary
Kato inequalities.
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Getting Kato up to the boundary (= uniqueness)

A set of approaches for bounded domain, various BC’s:

e Get / use up-to-the-boundary entropy inequalities and doubling.
[Carrillo '99], special case with zero Dirichlet BC, half-entropies
[Otto '96], [Vovelle '02], based on “weak traces” which always exist
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Getting Kato up to the boundary (= uniqueness)

A set of approaches for bounded domain, various BC’s:

e Get / use up-to-the-boundary entropy inequalities and doubling.
[Carrillo '99], special case with zero Dirichlet BC, half-entropies
[Otto '96], [Vovelle '02], based on “weak traces” which always exist

e Use local “Kato ineq.”, then let &, — 1, V&, — —d|gqr generating
a sign-definite boundary term sign(u — &) (F(u) — F(T)) - v

due to existence of strong traces of the normal flux F(u) - v.

Ok for the hyperbolic case: [Bardos, LeRoux, N'edélec 78] with BV,
[Vasseur '01], [Burger, Karlsen, Frid '09], [A., Sbihi '15] beyond BV
NOT Ok for parabolic case, strong traces of V¢ (u) - v need not exist
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Getting Kato up to the boundary (= uniqueness)

A set of approaches for bounded domain, various BC’s:

e Get / use up-to-the-boundary entropy inequalities and doubling.
[Carrillo '99], special case with zero Dirichlet BC, half-entropies
[Otto '96], [Vovelle '02], based on “weak traces” which always exist

e Use local “Kato ineq.”, then let &, — 1, V&, — —d|gqr generating
a sign-definite boundary term sign(u — &) (F(u) — F(T)) - v

due to existence of strong traces of the normal flux F(u) - v.

Ok for the hyperbolic case: [Bardos, LeRoux, N'edélec 78] with BV,
[Vasseur '01], [Burger, Karlsen, Frid '09], [A., Sbihi '15] beyond BV
NOT Ok for parabolic case, strong traces of V¢ (u) - v need not exist

e Approaches mixing strong and weak traces.
- Strong trace for F(u), weak trace for Vw - v, tricky &, [A., Igbida "07]
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Getting Kato up to the boundary (= uniqueness)

A set of approaches for bounded domain, various BC’s:

e Get / use up-to-the-boundary entropy inequalities and doubling.
[Carrillo '99], special case with zero Dirichlet BC, half-entropies
[Otto '96], [Vovelle '02], based on “weak traces” which always exist

e Use local “Kato ineq.”, then let &, — 1, V&, — —d|gqr generating
a sign-definite boundary term sign(u — &) (F(u) — F(T)) - v

due to existence of strong traces of the normal flux F(u) - v.

Ok for the hyperbolic case: [Bardos, LeRoux, N'edélec 78] with BV,
[Vasseur '01], [Burger, Karlsen, Frid '09], [A., Sbihi '15] beyond BV
NOT Ok for parabolic case, strong traces of V¢ (u) - v need not exist

e Approaches mixing strong and weak traces.

- Strong trace for F(u), weak trace for Vw - v, tricky &, [A., Igbida "07]

- "weak-strong uniqueness" approach:
if there is a dense set of “trace-regular solutions”,
use comparison of a trace-regular and a general solution.
Ok for some parabolic problems. [A., Bouhsiss '04], [A., Gazibo ’13].
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An example of tricky test functions

From [A., Igbida '07], for the case F(u) = F(¢(u)):
test functions &, with V&, supported in 1E-neighbourhood Q, of 0.

Explicit test functions:
Just take £9(x) := nmin{1, dist(x,9Q)}.
Requires regularity of 09...

Auxiliary PDE for test functions:

Take &8 for prescribing BCs on 09Q,, solve —A¢, = 01in Q.
~» quite irregular domains (even cracks) can be covered.
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An example of tricky test functions

From [A., Igbida '07], for the case F(u) = F(¢(u)):
test functions &, with V&, supported in 1E-neighbourhood Q, of 0.

Explicit test functions:
Just take £9(x) := nmin{1, dist(x,9Q)}.
Requires regularity of 09...

Auxiliary PDE for test functions:

Take &8 for prescribing BCs on 09Q,, solve —A¢, = 01in Q.
~» quite irregular domains (even cracks) can be covered.

A general trend:

“competition” between explicit choices of simple test functions

and test functions obtained by solving some auxiliary PDE problems
(like Holmgren’s method, with solving a “dual equation”).

NB At the border: nice functions like the fundamental solution of —A !
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Conservation laws in the whole space:

a complex picture,
Panov’s non-uniqueness example



Whole-space
oe

Hyperbolic case, the whole space...

ou-+divF(u)y=0 inRy xRN
“Kato inequality” is proved by Kruzhkov for L7, solutions.
If F is Lipschitz, uniqueness (even a localized one) follows.
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Hyperbolic case, the whole space...

ou-+divF(u)y=0 inRy xRN
“Kato inequality” is proved by Kruzhkov for L7, solutions.
If F is Lipschitz, uniqueness (even a localized one) follows.
In the whole space, with non-Lipschitz flux F... uniqueness ?
e [Bénilan '72] uniqueness if Fis (1 — 1N) (locally) Holder.
Uniqueness for N = 1 for merely continuous F.
e [Panov '91],[Kruzhkov, Panov '94], non-uniqueness example in L>
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Hyperbolic case, the whole space...

ou-+divF(u)y=0 inRy xRN
“Kato inequality” is proved by Kruzhkov for L7, solutions.
If F is Lipschitz, uniqueness (even a localized one) follows.

In the whole space, with non-Lipschitz flux F... uniqueness ?

e [Bénilan '72] uniqueness if Fis (1 — f) (locally) Holder.
Uniqueness for N = 1 for merely continuous F.
e [Panov '91],[Kruzhkov, Panov '94], non-uniqueness example in L>

o [Kruzhkov, Panov '94],[Bénilan, Kruzhkov '96] anisotropic conditions
on "cumulative" Hélder continuity of flux components

FieCl o+ Fay>N-1.

loc’

Techniques: explicit test functions, use of moduli of continuity.
Link to Panov’s counterexample (N =2, a1 + ap <1 =2 —1).
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Hyperbolic case, the whole space...

ou-+divF(u)y=0 inRy xRN
“Kato inequality” is proved by Kruzhkov for L7, solutions.
If F is Lipschitz, uniqueness (even a localized one) follows.

In the whole space, with non-Lipschitz flux F... uniqueness ?

e [Bénilan '72] uniqueness if Fis (1 — 7) (locally) Holder.
Uniqueness for N = 1 for merely continuous F.

e [Panov '91],[Kruzhkov, Panov '94], non-uniqueness example in L>
o [Kruzhkov, Panov '94],[Bénilan, Kruzhkov '96] anisotropic conditions
on "cumulative" Hélder continuity of flux components
Fi e CL, ar+--+ay>N-—1.
Techniques: explicit test functions, use of moduli of continuity.
Link to Panov’s counterexample (N =2, oy +ap <1 =2 —1).
e [Bénilan, Kruzhkov "96], [A., Bénilan, Kruzhkov *00]
an unusual sufficient condition for uniqueness, a tricky proof:

L' data and solution, (N — 1) flux components are monotone.
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Convection-diffusion in the whole space.
Dual problems and weighted estimates
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Convection-diffusion in the whole space

oru+div F(u) + (-A)°¢(u) =0 inR, x RN
“Kato inequality” proved in local and non-local cases.

“Cumulative Hélder” assumption, local diffusion:
[Maliki, Touré *03] With explicit test functions, uniqueness in L* for

Fe Cf)o’;_% (or the anisotropic condition) and ¢ € C

Key properties: |V&q| < Cl&n|, |A&n| < Clénl-
Key techniques: moduli of continuity, inverse Gronwall ineq.

0,1-3
loc
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Convection-diffusion in the whole space

oru+div F(u) + (-A)°¢(u) =0 inR, x RN
“Kato inequality” proved in local and non-local cases.

“Cumulative Hélder” assumption, local diffusion:
[Maliki, Touré *03] With explicit test functions, uniqueness in L* for

Fe Cf)o’;_% (or the anisotropic condition) and ¢ € C

Key properties: |V&q| < Cl&n|, |A&n| < Clénl-
Key techniques: moduli of continuity, inverse Gronwall ineq.

0,1-3
loc

Removing the Holder restriction on ¢:

[A., Maliki *10] With ¢, — 1 obtained from truncated fundamental
solution of (—A), uniqueness in L with F € C,%;W (isotropic)

Key techniques: moduli of continuity, weighted integrals, Jensen ineq.
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Convection-diffusion in the whole space

oru+div F(u) + (-A)°¢(u) =0 inR, x RN
“Kato inequality” proved in local and non-local cases.

“Cumulative Hélder” assumption, local diffusion:
[Maliki, Touré *03] With explicit test functions, uniqueness in L* for

0,1—
FeCp

Key properties: |V&q| < Cl&n|, |A&n| < Clénl-
Key techniques: moduli of continuity, inverse Gronwall ineq.

01-2

" (or the anisotropic condition) and ¢ € C,,

Removing the Holder restriction on ¢:

[A., Maliki *10] With ¢, — 1 obtained from truncated fundamental
solution of (—A), uniqueness in L with F € C,%;W (isotropic)

Key techniques: moduli of continuity, weighted integrals, Jensen ineq.

Adaptation to the non-local (fractional) case:

[A., Brassart '20] Analogous results hold for fractional diffusion.
Key techniques: describing action of (—A)® on radial powers
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Dual equation, weighted estimates

Refinement in the case of (locally) Lipschitz F, ¢

o [Alibaud '07] initiated the analysis of the fractional case, using

“finite-infinite speed of propagation” hint.

Analogue of Kruzhkov localized estimate accounting for diffusion
~R+LT

R
/ |u,a|(r,,)§/ o — Tol(.) * K(T..)
J—R J—R—LT
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Dual equation, weighted estimates

Refinement in the case of (locally) Lipschitz F, ¢

o [Alibaud '07] initiated the analysis of the fractional case, using
“finite-infinite speed of propagation” hint.
Analogue of Kruzhkov localized estimate accounting for diffusion

R R+LT
/ wfamrqg/ o — Tol(.) * K(T..)
J—R LT

¢ [Endal, Jakobsen '14],[Alibaud, Endal, Jakobsen’19] obtained
weighted estimates via a systematic duality approach:

construct &, solving a “dual equation” of Hamilton-Jacobi kind
with, e.g., §(T,.) = ¢7(.), .9., = 1_RR)
Outcome: time-dependent weighted propagation estimates

Ju— BT e () <

RN R

o = Bol()<(0..)
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Dual equation, weighted estimates

Refinement in the case of (locally) Lipschitz F, ¢

o [Alibaud '07] initiated the analysis of the fractional case, using
“finite-infinite speed of propagation” hint.
Analogue of Kruzhkov localized estimate accounting for diffusion

R R+LT
/ |u,a|(r,,)§/ o — Tol(.) * K(T..)
J—R LT

¢ [Endal, Jakobsen '14],[Alibaud, Endal, Jakobsen’19] obtained
weighted estimates via a systematic duality approach:
construct &, solving a “dual equation” of Hamilton-Jacobi kind
with, e.g., §(T,.) = ¢7(.), .9., = 1_RR)
Outcome: time-dependent weighted propagation estimates
u—2|(T, )er() < | |uo — Bol()&(0, )
RN RN

¢ [A., Endal, in progress]: extension of the duality strategy and
weighted estimates to non-Lipschitz F, ¢; “cleaning” the picture
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Uniqueness of L* solutions
of stationary PM/FD equations



Stationary PM/FD equation
o] 1]

Three arguments for uniqueness of L>° solutions

Byproduct of one of the above results: [A., Maliki ’21], for
u— Ag¢(x,u) =g (“stationary” elliptic problem)

How Kato ineq. imply uniqueness of L>° solutions?
We bring three different answers, all covering the desired L setting
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Three arguments for uniqueness of L>° solutions

Byproduct of one of the above results: [A., Maliki '21], for
u— Ag¢(x,u) =g (“stationary” elliptic problem)

How Kato ineq. imply uniqueness of L>° solutions?
We bring three different answers, all covering the desired L setting

o Keller-Osserman technique ([Brézis '84],[Gallouét, Morel '87])

with some refinements, uniqueness in L} ,(RV)

o Weigted L' (RN, p(.)) setting with exponentially decaying weights
p(x) = exp(—C|x|), C depend on ¢; use of Kato with S(.) # |.|

e Weigted L' (RV, p(.)) setting with p superharmonic,
typically p(x) = W, results close to [Bénilan, Crandall '81],
extendable to weak solutions of FDE/PME evolution problem

Common techniques:
extensive use of modulus of continuity w of ¢ and its inverse Q,
Fenchel-Legendre transform Q*; Jensen inequality



Thank you / Gracias !



	Kato inequalities for the Laplacian, generalizations.  Formal uniqueness argument and missing details
	Entropy inequalities and doubling of variables
	Parabolic dissipation in entropy inequalities  (focus on non-local diffusion case, link to kinetic formulation)
	Up-to-the-boundary Kato inequalities
	Conservation laws in the whole space:   a complex picture, counterexamples to uniqueness
	Convection-diffusion case:  dual problems and weighted estimates
	Uniqueness of L solutions of stationary PM/FD equations

