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Goals

We study
−divA(x ,Du) = µ in Ω ⊂ Rn

with bounded measure µ and Carathéodory’s function A having
Orlicz growth with respect to the second variable.

Solutions can be unbounded, but we can control them precisely by a
certain potential and infer local properties such as Hölder continuity.
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The operator

∆

−∆u = µ

−∆pu = µ, 1 < p <∞

more!
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Aim

Precise transfer of (local) regularity
from data to solutions to −divA(x ,Du) = µ.
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Who can be called ‘a solution’?

A function u ∈W 1,p
loc (Ω) is called a weak solution to a problem{

−divA(x ,Du) = µ in Ω,

u = 0 on ∂Ω,

if

∫
Ω

A(x ,Du) · Dφ dx =

∫
Ω

φ dµ(x) for every φ ∈ C∞c (Ω).

It’s too restrictive for arbitrary data!

Weak solutions are too restrictive,
distributional solutions can be wild... :(

...but they can also be almost nice!
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Measure data problems with power growth

−∆pu = −div(|Du|p−2Du) = µ, 1 < p <∞

Already for −∆pu = δ0 in B(0, 1) we deal with the so-called fundamental
solution

G (x) = cn,p
(
|x |

p−n
p−1 − 1

)
if 1 < p < n,

which does not belong to W 1,p
0 (B(0, 1)), for small p, but we like it!

One may study various kids of very weak solutions:
SOLA (Boccardo&Gallouët ’89), renormalized solutions (DiPerna&Lions ’89,
Boccardo, Giachetti, Diaz, Murat ’93), entropy solution (Bénilan, Boccardo,
Gallouët, Gariepy, Pierre, Vazquez, Murat ’95), or (Kilpeläinen, Kuusi,
Tuhola-Kujanpää ’11) A-superharmonic functions.

Be careful: if 1 < p < 2− 1
n , then it is possible that u 6∈W 1,1

loc .
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Measure data problems with Orlicz growth

We study
−divA(x ,Du) = µ,

where A(x , ξ) · ξ ' G (|ξ|)

⇐ here G ∈ ∆2 ∩∇2,
e.g. Gp,α(s) = sp logα(1 + s), 1 < p <∞, α ∈ R.

Scalar problem

µ is a bounded measure, A : Ω× Rn → Rn is a monotone
Carathéodory’s function, G ∈ C 1((0,∞)) is a nonnegative, increasing,
and convex function such that G ∈ ∆2 ∩∇2 and{

cA1 G (|ξ|) ≤ A(x , ξ) · ξ,
|A(x , ξ)| ≤ cA2 g(|ξ|),

where g is the derivative of G .
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Who is called ‘a solution’?

A-harmonicity

A continuous function u ∈W 1,G
loc (Ω) is an A-harmonic function in an

open set Ω if it is a (weak) solution to −divA(x ,Du) = 0.

A-super/subharmonicity

We say that a lower semicontinuous function u is A-superharmonic if
for any K b Ω and any A-harmonic h ∈ C (K ) in K , u ≥ h on ∂K
implies u ≥ h in K (u is A-subharmonic if (−u) is A-superharmonic).

An A-superharmonic function
• is defined everywhere,
• can be unbounded,
• can be identified with a distributional solution to a measure data

problem.

This guy we want to ‘control by a potential’ and prove its regularity.
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Potential estimate in the linear case 1/2
Global case

If u solves −∆u = µ in Rn, then

u(x) =

∫
Rn

G(x , y) dµ(y)

with Green’s function

G(x) =
cn

|x − y |n−2
if n > 2,

so it can be estimated as follows

|u(x)| .
∫
Rn

d |µ|(y)

|x − y |n−2
=: I2(|µ|)(x) ⇐ Riesz potential
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Potential estimate in the linear case 2/2
Local behaviour of solutions to −∆u = µ

Localized/trucated Riesz potential of a nonnegative measure

Iµ2 (x ,R) :=

∫ R

0

|µ|(B%(x))

%n−2

d%

%
.n

∫
BR(x)

d |µ|(y)

|x − y |n−2

≤
∫
Rn

d |µ|(y)

|x − y |n−2
= I2(|µ|)(x) ⇐ Riesz potential

Then locally

|u(x)| ≤ C
(
Iµ2 (x ,R) + ‘sth not that much important ′

)
.
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Potential estimate in the power growth case
−∆pu = −div(|Du|p−2Du) = µ for 1 < p <∞

Expecting

|u(x)| ≤ C
(
Wµ

p (x ,R) + ‘sth(u,R) not that much important ′
)
,

we have to employ another potential

Wµ
p (x ,R) =

∫ R

0

(
|µ|(B%(x))

%n−1

) 1
p−1

d%

called Wolff potential (similar ones were considered by Havin & Maz’ya).

For p = 2 we are back with Riesz potential.

Kilpeläinen & Malý [’92,’94] proven that for µ ≥ 0 we actually have

Wµ
p (x ,R) . u(x) .Wµ

p (x , 2R) + ‘sth(u,R)′

next proofs: Trudinger & Wang [2002] and Korte & Kuusi [2010]
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Estimates for scalar A-superharmonic functions
Theorem by C, Giannetti, Zatorska-Goldstein, arXiv:2006.02172

Assume that u is a nonnegative function being A-superharmonic and
finite a.e. in B(x0,RW) b Ω for some RW , µu is generated by u and
g = G ′. Let (Havin-Mazy’a-)Wolff potential be given by

Wµu
G (x0,R) =

∫ R

0
g−1

(
µu(B(x0, r))

rn−1

)
dr .

Then for R ∈ (0,RW/2) we have

CL

(
Wµu

G (x0,R)− R
)
≤ u(x0) ≤ CU

(
inf

B(x0,R)
u(x) +Wµu

G (x0,R) + R

)
with CL,CU > 0 depending only on parameters iG , sG , c

A
1 , c

A
2 , n.

* Similar upper bound was proven by Malý in 2003 for A-superminimizer.
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Consequences

Quick remarks

• The result is sharp as the same potential controls bounds from
above and from below.

• Let u ≥ 0 be A-superharmonic, finite a.e., µu := −divA(x ,Du).
Then u is continuous in x0 ⇐⇒ Wµu

G (x , r) is small for x ∈ Bx0(r).

Orlicz version of Hedberg–Wolff Theorem

Let µ be a nonnegative bounded measure compactly supported in
bounded open set Ω ⊂ Rn. Then

µ ∈ (W 1,G
0 (Ω))′ ⇐⇒

∫
Ω
Wµ

G (x ,R) dµ(x) <∞ for some R > 0.
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Fundamental solution
for operators of Zygmund growth

Suppose that 1 < p < n, α ∈ R, 0 < a ∈ L∞(Ω) separated from zero,
and u is a nonnegative A-superharmonic function in Ω, such that

−divA(x ,Du) = −div
(
a(x)|Du|p−2 logα(e + |Du|)Du

)
= δ0

in the sense of distributions. Then

c−1|x |−
n−p
p−1 log−

α
p−1 (e + |x |) ≤ u(x)

≤ c

(
|x |−

n−p
p−1 log−

α
p−1 (e + |x |) + inf

B(x ,2|x |)
u

)
.
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Lorentz spaces

We define the decreasing rearrangement f ∗ of a measurable function
f : Ω→ R by

f ∗(t) = sup{s ≥ 0: |{x ∈ Rn : f (x) > s}| > t},

the maximal rearrangement by

f ∗∗(t) =
1

t

∫ t

0
f ∗(s) ds and f ∗∗(0) = f ∗(0),

and finally the Lorentz space L(α, β)(Ω) for α, β > 0 as the space of
measurable functions such that∫ ∞

0

(
t1/αf ∗∗(t)

)β dt

t
<∞.

15 of 35



Lorentz data =⇒ continuity of solutions

Let u be a nonnegative A-superharmonic function in Ω and
Fu := −divA(x ,Du) in the sense of distributions. If Fu satisfies∫ ∞

0
t

1
n g−1

(
t

1
nFu
∗∗(t)

) dt

t
<∞

for Ω0 b Ω, then u ∈ C (Ω0).

p-Laplace case
If u is nonnegative & p-superharmonic, p > 1, and
Fu ∈ L(np ,

1
p−1 )(Ω), then u is continuous.

Zygmund-growth operator case
If u ≥ 0, −div

(
a(x)|Du|p−2 logα(e + |Du|)Du

)
= Fu ≥ 0, p > 1,

α ∈ R, and Fu is as above with g−1(λ) ' λ
1

p−1 log−
α

p−1 (e + λ), then
u is continuous.
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α ∈ R, and Fu is as above with g−1(λ) ' λ
1

p−1 log−
α

p−1 (e + λ), then
u is continuous.
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Morrey data ⇐⇒ Hölder continuity of solutions

Consider the density condition

µθ(B(x , r)) ≤ crn−1g(rθ−1) ' rn−θG (rθ−1). (M)

Suppose u ≥ 0 is A-superharmonic and µu := −divA(x ,Du).

• If u ∈ C 0,θ
loc (Ω) with certain θ ∈ (0, 1), then µ satisfies (M).

• If µθ satisfies (M) for some θ ∈ (0, 1), then u is locally Hölder
continuous.

p-Laplace case
(M) reads µ(B(x , r)) ≤ crn−p+θ(p−1)

Zygmund-growth operator case
(M) reads µ(B(x , r)) ≤ crn−p+θ(p−1) logα(e + rθ−1)

* we provide natural Marcinkiewicz-type characterization relating to
µ ∈ L( n

p+θ(p−1) ,∞)(Ω) for some θ ∈ (0, 1) implying that µ satisfies

(M) and consequently Hölder continuity of a solution.
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Methods
for scalar equations

Harmonic analysis

a range of generalized harmonic tools (Maximum principle, Harnack
inequality, Poisson modification) prepared for generalized Orlicz
framework in [C, Zatorska-Goldstein, Generalized superharmonic
functions with strongly nonlinear operator, Potential Analysis]

• Björn, Björn, Nonlinear potential theory on metric spaces, 2011

Wolff potential estimates

influential for our proof: Trudinger&Wang 2002, Korte&Kuusi 2010,
for regularity consequences: Kuusi&Mingione 2014.

Important for start: reduction to continuous weak A-supersolutions
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Methods for scalar equations
Lower bound

Figure: wk is A-harmonic in the
interior of the outer dashed annulus
and wk+1 is A-harmonic in the
interior of the inner dashed annulus.
picture by Arttu Karppinen

An A-supersolution generates
a nonnegative measure
µu ∈ (W 1,G

0 (Bk))′ such that
−divA(x ,Du) = µu ≥ 0.
Then having θk ∈ C∞0 ( 5

4Bk+1)
such that 1Bk+1

≤ θk ≤ 1 5
4
Bk+1

,

we set µwk
:= θkµu in Bk .

We study properties of

wk ∈W
1,ϕ(·)
0 (Bk) being a weak

solution to
−divA(x ,Dwk) = µwk

in Bk .

The aim is to keep control over what happens to wk on ∂ 2
3Bk .
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Methods for scalar equations
Upper bound

Figure: v is A-harmonic in ω - the
family of dashed annuli. Functions
wk are zero boundary valued in the
respective thicker circles.
picture by Arttu Karppinen

Let v be a Poisson modification
v = P(u, ω), i.e.

{
v is A-harmonic in ω,

v = u otherwise.

We consider wk ∈W 1,G
0 ( 4

3Bk+1)
solving

−divA(x ,Dwk) = µv in 4
3Bk+1 for k = 0, 1, . . . .
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What can be inferred further?

We have

CL

(
Wµu

G (x0,R)− R
)
≤ u(x0) ≤ CU

(
inf

B(x0,R)
u(x) +Wµu

G (x0,R) + R

)
.

More fancy estimates on the potential would imply more precise
estimates on solutions.
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Sharp rearrangement estimate
work with Micha l Borowski and B lażej Miasojedow

Suppose ψ : R+ → R+ is a nondecreasing function, n ≥ 1, α ∈ (0, n),
and

W α,ψf (x) :=

∫ ∞
0

rα−1ψ

(
rα−n

∫
B(x ,r)

|f (y)| dy

)
dr

Then there exist C1 = C1(α, n) > 0 and C2 = C2(α, n) > 0 such that

(W α,ψf )∗(t) ≤ C1

∫ ∞
t

s
α
n
−1ψ

(
C2s

α
n f ∗∗(s)

)
ds

if f : Rn → R is measurable and |{x : |f (x)| > t}| <∞ for t > 0.
The result is sharp, in the sense that the reverse inequality is true for
any nonnegative and radially decreasing f .

p-case: [Cianchi, Ann SNS Pisa 2011]
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Boundedness of potential W α,ψ

Let X (Rn) and Y (Rn) be quasi-normed rearrangement invariant spaces and

h : R+ → R+ is nondecreasing. Then the following assertions are equivalent.

(i) [Boudedness] There exists a constant c > 0 such that for every
f ∈ X (Rn) it holds that

||h(W α,ψf )||Y (Rn) ≤ c ||f ||X (Rn);

(ii) [1-d Hardy-type inequality] There exists a constant c > 0 such that for
every nonnegative function φ ∈ X (0,∞) it holds∥∥∥∥h(C1

∫ ∞
t

s
α
n −1ψ

(
s

α
n −1

∫ s

0

φ(y) dy

)
ds

)∥∥∥∥
Y (0,∞)

≤ c ||φ||X (0,∞).

Application: transfer regularity from data to solutions
to −divA(x ,Du) = f via potential estimates

Good choices of X ,Y : Lebesgue, Orlicz (including L log L), Lorentz,
Marcinkiewicz, Morrey, Campanato, combinations
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Further potential estimates
obtained via similar methods together with Arttu Karppinen

It’s a generalized Orlicz version where G (|Du|) is substituted by
ϕ(x , |Du|).

Then the relevant counterpart of condition (M) reads

µθ(B(x , r)) ≤ cr−θ
∫
B(x ,r)

ϕ(x , rθ−1) dx . (Mx)

Morrey data ⇐⇒ Hölder continuity of solutions

Suppose u ≥ 0 is A-superharmonic and µu := −divA(x ,Du).

• If u ∈ C 0,θ
loc (Ω) with certain θ ∈ (0, 1), then µ satisfies (Mx).

• If µθ satisfies (Mx) for some θ ∈ (0, 1), then u is locally Hölder
continuous.

See [C., De Filippis, Removable sets... ’2020]
and [C., Karppinen, Removable sets... ’2021].
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Let’s go to systems
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Vectorial problem
Notion of solutions * Solutions Obtained as a Limit of Approximation (SOLA)

A map u ∈W 1,1
0 (Ω,Rm) such that

∫
Ω g(|Du|) dx <∞ is called a

SOLA to
−divdivdivA(x ,Du) = µµµ (S)

if there exists a sequence (uh) ⊂W 1,G (Ω,Rm) of local energy
solutions to the systems

−divdivdivA(x ,Duh) = µµµh

such that uh → u locally in W 1,1(Ω,Rm) and (µµµh) ⊂ L∞(Ω,Rm) is a
sequence of maps that converges to µµµ weakly in the sense of
measures and satisfies

lim sup |µµµh|(B) ≤ |µµµ|(B) for B ⊂ Ω.

‘Approximable solutions’ differ in regularity and assumed convergence.
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Measure data systems with Orlicz growth 1/2
C., Youn, Zatorska–Goldstein, arXiv:2106.11639

Assume that A : Ω× Rn×m → Rn×m is strictly monotone, A(x , 0) = 0, and
A satisfies the following conditions

A(x , ξ) : ξ ≥ c1G (|ξ|), |A(x , ξ)| ≤ c2 (g(|ξ|) + b(x)) ,

for some b ∈ LG̃ (Ω). Furthermore, we require A to satisfy

A(x , ξ) :
(
(Id− w ⊗ w)ξ

)
≥ 0

for a.a. x ∈ Ω, all ξ ∈ Rn×m, and every vector w ∈ Rm with |w | ≤ 1.

see [Dolzmann, Hungerbühler, and Müller, 1997-2000]

We prove existence of approximable solutions to (S). Moreover

(i) If G grows so fast that
∫∞ ( t

G(t)

) 1
n−1

dt <∞ (≈ p > n), then any

approximable solution u is a weak solution.
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Measure data systems with Orlicz growth 2/2
C., Youn, Zatorska–Goldstein, arXiv:2106.11639

(ii) If G grows so slowly that
∫∞ ( t

G(t)

) 1
n−1

dt =∞ holds, we have

|u| ∈ Lϑn(·),∞(Ω) and |Du| ∈ Lθn(·),∞(Ω).

(iii) Let Ψn(t) := G(t)

Hn(t)n′
and G grows fast enough to satisfy∫ ∞ dt

Ψn(t)
<∞ ≈ p > 2− 1

n .

Then each approximable solution u to (S) satisfies u ∈W 1,1(Ω,Rm) and∫
Ω
g(|Du|) dx <∞, hence it is a SOLA.
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Assumptions for potential estimates
Vectorial problem

We investigate solutions u : Ω→ Rm to the problem{
−divdivdivA(x ,Du) = µµµ in Ω,

u = 0 on ∂Ω
(S)

with a datum µµµ being a vector-valued bounded Radon measure,
G ∈ C 2((0,∞))∩C (R+), g = G ′ is increasing and g ∈ ∆2 ∩∇2, and
A : Ω× Rn×m → Rn×m is assumed to admit a form

A(x , ξ) = a(x)
g(|ξ|)
|ξ|

ξ,

with continuous weight a : Ω→ [ca,Ca], 0 < ca < Ca.

Existence result was provided for more general class of problems.
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Estimates for SOLA to the vectorial problem
Theorem by C, Youn, Zatorska-Goldstein, arXiv:2102.09313

Suppose u : Ω→ Rm is a local SOLA to −divdivdivA(x ,Du) = µµµ with A
as prescribed, and µµµ is bounded. Let Br (x0) b Ω with r < R0 for
some R0 = R0(data). If Wµµµ

G (x0, r) is finite, then x0 is a Lebesgue’s
point of u and

|u(x0)− (u)Br (x0)| ≤ C

(
Wµµµ

G (x0, r) +

∫
Br (x0)

|u − (u)Br (x0)| dx

)
holds for C > 0 depending only on data. In particular, we have the
following pointwise estimate

|u(x0)| ≤ C

(
Wµµµ

G (x0, r) +

∫
Br (x0)

|u(x)|dx

)
.

p-Laplace problem: [Kuusi&Mingione, JEMS 2018]
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Consequences 1/2

VMO criterion
Let u be a SOLA to −divdivdivA(x ,Du) = µµµ and let Br (x0) b Ω. If

lim
%→0

% g−1

(
|µµµ|(B%(x0))

%n−1

)
= 0,

then u has vanishing mean oscillations at x0, i.e.

lim%→0

∫
B%(x0)

|u − (u)B%(x0)| dx = 0.

Continuity criterion

Suppose u be a SOLA to −divdivdivA(x ,Du) = µµµ and Br (x0) b Ω. If
lim%→0 supx∈Br (x0)W

µµµ
G (x , %) = 0, then u is continuous in Br (x0).

=⇒ any A-harmonic map is continuous
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Consequences 2/2
the same what for the scalar equation results from an upper bound

Lorentz data =⇒ continuous solutions
For −divdivdivA(x ,Du) = F let f = |F |. If

∫∞
0 t

1
n g−1

(
t

1
n f ∗∗(t)

)
dt
t <∞,

then a SOLA u is continuous.

Morrey data =⇒ Hölder continuous solutions

If u is a SOLA to −divdivdivA(x ,Du) = µµµθ and
|µµµθ|(B(x , r)) ≤ crn−1g(rθ−1), then u is locally Hölder continuous.

+ natural Marcinkiewicz-type characterization relating to
µ ∈ L( n

p+θ(p−1) ,∞), θ ∈ (0, 1), implying local Hölder continuity of
solutions
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Methods
for systems

main tool: A-harmonic approximation lemma

the approximation of a W 1,G -function by an A-harmonic map for
weighted operator A of an Orlicz growth being a generalized version
of p-harmonic version from [Kuusi&Mingione, JEMS 2018]

OPEN
subquadratic case
more general structure of the operator
anisotropic problems
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(1) PDEs in Anisotropic Musielak-Orlicz spaces

(2) Workshop on Nonuniformly Elliptic Problems
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Thank you for your attention!

35 of 35


