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more!



Aim

Precise transfer of (local) regularity
from data to solutions to —div.A(x, Du) = p.
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Who can be called ‘a solution’?

A function u € W.2P(Q) is called a weak solution to a problem

—divA(x,Du) =p in Q,
u=0 on 09,

if /.A(x7 Du) - Do dx = / ¢ du(x) forevery ¢ € CZ°(Q).
Q Q

It's too restrictive for arbitrary data!

Weak solutions are too restrictive,
distributional solutions can be wild... :(

...but they can also be almost nice!
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Measure data problems with power growth

—Apu = —div(|DulP~2Du) = 4, l<p<o

Already for —A,u = dg in B(0,1) we deal with the so-called fundamental
solution

G(x) = cnp (|x\5 - 1) if1<p<n,
which does not belong to Wi?(B(0,1)), for small p, but we like it!

One may study various kids of very weak solutions:

SOLA (Boccardo& Gallouét '89), renormalized solutions (DiPerna&Lions '89,
Boccardo, Giachetti, Diaz, Murat '93), entropy solution (Bénilan, Boccardo,
Gallouét, Gariepy, Pierre, Vazquez, Murat '95), or (Kilpeldinen, Kuusi,
Tuhola-Kujanpaa '11) A-superharmonic functions.

Be careful: if 1l < p<2— % then it is possible that u & W,

loc
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Measure data problems with Orlicz growth

We study
—divA(x, Du) = p,

where A(x,&) - & ~ G([¢|) < here G € Ay N V5,
eg. Gpo(s)=sPlog*(l+s),l<p<oo, acR.

Scalar problem

i is a bounded measure, A : Q x R" — R" is a monotone
Carathéodory's function, G € C1((0,00)) is a nonnegative, increasing,
and convex function such that G € A, NV, and

{cf‘cusn < A(x,€) - &,
A%, 8)] < cfe(€),

where g is the derivative of G.
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Who is called ‘a solution’?

A-harmonicity
A continuous function u € Wl’G(Q) is an A-harmonic function in an

loc
open set Q if it is a (weak) solution to —div.A(x, Du) = 0.
A-super/subharmonicity
We say that a lower semicontinuous function u is A-superharmonic if
for any K € Q and any A-harmonic h € C(K) in K, u > h on 0K

implies u > h in K (u is A-subharmonic if (—u) is A-superharmonic).
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A-harmonicity
A continuous function u € W,(I)’CG(Q) is an A-harmonic function in an
open set Q if it is a (weak) solution to —div.A(x, Du) = 0.
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An A-superharmonic function

e is defined everywhere,

e can be unbounded,

e can be identified with a distributional solution to a measure data
problem.
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Who is called ‘a solution’?

A-harmonicity
A continuous function u € W,(I)’CG(Q) is an A-harmonic function in an
open set Q if it is a (weak) solution to —div.A(x, Du) = 0.

A-super/subharmonicity

We say that a lower semicontinuous function u is A-superharmonic if
for any K € Q and any A-harmonic h € C(K) in K, u > h on 0K
implies u > h in K (u is A-subharmonic if (—u) is A-superharmonic).

An A-superharmonic function

e is defined everywhere,

e can be unbounded,

e can be identified with a distributional solution to a measure data
problem.

This guy we want to ‘control by a potential’ and prove its regularity.
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Potential estimate in the linear case 1/2

Global case

If usolves —Au = p in R", then

u(x) = A G(x,y)duly)
with Green's function
Cn
G(x) = Xy if n>2,



Potential estimate in the linear case 1/2

Global case

If usolves —Au = p in R", then

u(x) = A G(x,y)duly)
with Green's function
Cn
G(x) = Xy if n>2,

so it can be estimated as follows

d
lu(x¥)| < / m =: Io(|u|)(x) <« Riesz potential
R7 (X —
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Potential estimate in the linear case 2/2

Local behaviour of solutions to —Au = p

Localized/trucated Riesz potential of a nonnegative measure

R pl(By(x)) do d|pl(y)
(x, R) __/0 111(By(x)) de <”/B _dlul(y)
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lu(x)| < C (I5(x, R) + ‘sth not that much important) .
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R ul(By(x)) do d|pl(y)
(x, R) __/0 111(By(x)) de <”/B _dlul(y)

0" 2 0 ™ Jppx) Ix —y|m?

| |(-y) N N
< ———2= =T5(|u])(x) < Riesz potential
> /n |X y|n,2 2(| |)( )

Then locally

lu(x)| < C (I5(x, R) + ‘sth not that much important’) .
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Potential estimate in the power growth case
—Apu = —div(|DulP™2Du) = p for 1 < p < oo

Expecting
lu(x)| < C (WHh(x, R) + ‘sth(u, R) not that much important') ,
we have to employ another potential
1l(Bo(x))
Wh(x, R):/O ( Qngl dg

called Wolff potential (similar ones were considered by Havin & Maz'ya).
For p = 2 we are back with Riesz potential.

Kilpeldinen & ['92,'94] proven that for 1 > 0 we actually have
WE(x, R) < u(x) S WhH(x,2R) + 'sth(u, R)'

next proofs: Trudinger & Wang [2002] and Korte & Kuusi [2010]
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Estimates for scalar A-superharmonic functions
Theorem by C, Giannetti, Zatorska-Goldstein, arXiv:2006.02172

Assume that v is a nonnegative function being A-superharmonic and
finite a.e. in B(xo, Ry) € Q for some Ry, 11, is generated by u and
g = G'. Let (Havin-Mazy'a-)Wolff potential be given by

W (x0, R) = /ORgl (W) dr.



Estimates for scalar A-superharmonic functions
Theorem by C, Giannetti, Zatorska-Goldstein, arXiv:2006.02172

Assume that v is a nonnegative function being A-superharmonic and
finite a.e. in B(xo, Ry) € Q for some Ry, 11, is generated by u and
g = G'. Let (Havin-Mazy'a-)Wolff potential be given by

R
by — Hu B X0, r
Then for R € (0, Ry /2) we have
C (W%“(Xo, R) - R) < u(Xo) < Cy <B(imcR) U(X) + W%”(XO, R) + R>
X0,

with C;, Cy > 0 depending only on parameters ig, sg, cf\, c§4, n.
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Estimates for scalar A-superharmonic functions
Theorem by C, Giannetti, Zatorska-Goldstein, arXiv:2006.02172

Assume that v is a nonnegative function being A-superharmonic and
finite a.e. in B(xo, Ry) € Q for some Ry, 11, is generated by u and
g = G'. Let (Havin-Mazy'a-)Wolff potential be given by

W (x0, R) = /ORgl (W) dr.

Then for R € (0, Ry /2) we have

CL (W& (x0, R) = R) < u(x0) < Cy < inf_u(x) + W (x, R) + R>

B(x0,R)

with C;, Cy > 0 depending only on parameters ig, sg, cf\, c§4, n.
* Similar upper bound was proven by in 2003 for A-superminimizer.
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Consequences

Quick remarks

e The result is sharp as the same potential controls bounds from
above and from below.

e Let u > 0 be A-superharmonic, finite a.e., p, := —div.A(x, Du).
Then u is continuous in xp <= W/“(x, r) is small for x € By (r).



Consequences

Quick remarks

e The result is sharp as the same potential controls bounds from
above and from below.

e Let u > 0 be A-superharmonic, finite a.e., p, := —div.A(x, Du).
Then u is continuous in xp <= W/“(x, r) is small for x € By (r).

Orlicz version of Hedberg—Wolff Theorem

Let i be a nonnegative bounded measure compactly supported in

bounded open set Q C R"”. Then

pE (Wol’G(Q))’ = / WH(x, R) dp(x) < oo for some R > 0.
Q
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Fundamental solution

for operators of Zygmund growth

Suppose that 1 < p < n, « € R, 0 < a € L*°(Q) separated from zero,
and u is a nonnegative A-superharmonic function in €2, such that

—divA(x, Du) = —div (a(x)|Du|P~2 log®(e + | Du|) Du) = do
in the sense of distributions. Then
x| o T log 7T (e + |x]) < u(x)

<c <|x|—2—’f log 71 (e + |x|) + L u) .



Lorentz spaces

We define the decreasing rearrangement f* of a measurable function
f:Q—Rby

f*(t) =sup{s > 0: |[{x € R": f(x) > s}| > t},
the maximal rearrangement by

F(t) = 1/0 f*(s)ds and £*(0) = *(0),

and finally the Lorentz space L(«a, 8)(2) for o, 3 > 0 as the space of
measurable functions such that

/OOO (tl/af**(t))ﬁ % < .
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Lorentz data — continuity of solutions

Let v be a nonnegative A-superharmonic function in € and
Fy := —divA(x, Du) in the sense of distributions. If F, satisfies

e d
/ t%g*(t% Fu**(t)> Tt < 00
0

for Qo € Q, then u € C(Qp).
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Lorentz data — continuity of solutions

Let v be a nonnegative A-superharmonic function in € and
Fy := —divA(x, Du) in the sense of distributions. If F, satisfies

! —1( .1 %« dt
tn tn F, (1)) —
| et (BRmw) G <o
for Qo € Q, then u € C(Qp).

p-Laplace case

If u is nonnegative & p-superharmonic, p > 1, and

Fu € L(3, ﬁ)(ﬂ) then u is continuous.

Zygmund-growth operator case

If u>0, —div (a(x)|DulP~?log(e + |Du|)Du) = F, >0, p > 1,

1 «
a € R, and F, is as above with g71(\) ~ Ap~T log” »~1(e + ), then
u is continuous.
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Morrey data <= Holder continuity of solutions

Consider the density condition
1o(B(x, 1)) < cr"g(r" 1) = 0 G(rY), (M)

Suppose u > 0 is A-superharmonic and i, := —div.A(x, Du).
e lfue C,?)’f(Q) with certain 6 € (0, 1), then p satisfies (M).

e If 119 satisfies (M) for some 6 € (0, 1), then u is locally Holder
continuous.
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Morrey data <= Holder continuity of solutions

Consider the density condition

pe(B(x,r)) < cr" tg(rf71) ~ 0G0, (M)
Suppose u > 0 is A-superharmonic and i, := —div.A(x, Du).
o If ue C2Y(Q) with certain 6 € (0,1), then y satisfies (M).

loc

e If 119 satisfies (M) for some 6 € (0, 1), then u is locally Holder
continuous.

p-Laplace case

(M) reads 1(B(x, r)) < cr"—p+o(p—1)

Zygmund-growth operator case

(M) reads pu(B(x, r)) < cr"=PH0(P=1) Jog®(e + rf-1)

* we provide natural Marcinkiewicz-type characterization relating to

e L(m7 00)(R2) for some 6 € (0, 1) implying that 1 satisfies

(M) and consequently Holder continuity of a solution.
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Methods

for scalar equations

Harmonic analysis

a range of generalized harmonic tools (Maximum principle, Harnack
inequality, Poisson modification) prepared for generalized Orlicz
framework in [C, Zatorska-Goldstein, Generalized superharmonic
functions with strongly nonlinear operator, Potential Analysis|

e Bjorn, Bjorn, Nonlinear potential theory on metric spaces, 2011

Wolff potential estimates
influential for our proof: Trudinger&Wang 2002, Korte&Kuusi 2010,
for regularity consequences: Kuusi&Mingione 2014.



S
Methods

for scalar equations

Harmonic analysis

a range of generalized harmonic tools (Maximum principle, Harnack
inequality, Poisson modification) prepared for generalized Orlicz
framework in [C, Zatorska-Goldstein, Generalized superharmonic
functions with strongly nonlinear operator, Potential Analysis|

e Bjorn, Bjorn, Nonlinear potential theory on metric spaces, 2011

Wolff potential estimates
influential for our proof: Trudinger&Wang 2002, Korte&Kuusi 2010,
for regularity consequences: Kuusi&Mingione 2014.

Important for start: reduction to continuous weak A-supersolutions
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Methods for scalar equations

Lower bound

Figure: wy is A-harmonic in the
interior of the outer dashed annulus
and wy,1 is A-harmonic in the

interior of the inner dashed annulus.

picture by Arttu Karppinen

An A-supersolution generates
a nonnegative measure

fu € (Wol’G(Bk))/ such that
—divA(x, Du) = pu, > 0.

Then having 0 € CSO(%B;(H)
such that 1g, , < 0, < ]I%Bkﬂ,
we set fiy, = Ok, in By.
We study properties of

Wk € Wol’W(')(Bk) being a weak
solution to

—divA(x, Dwy) = piw, in By.

The aim is to keep control over what happens to wy on 8%Bk.



Methods for scalar equations
Upper bound

Bpio
n
\ 3”‘\' 2
\‘?“ IBris
lll 0
1Bri
2Bra

Figure: v is A-harmonic in w - the
family of dashed annuli. Functions
wy are zero boundary valued in the
respective thicker circles.

picture by Arttu Karppinen

Let v be a Poisson modification
v=P(u,w), ie.

v = u otherwise.

{v is A-harmonic in w,

We consider wy € WOI’G(%B;(H)
solving

—divA(x, Dwg) = p,  in %Bk-&-l




What can be inferred further?

We have

C (W%”(Xo, R) — R) < u(x) < Cy (B(infR) u(x) + W‘é“(xo, R) + R) .
X0,



What can be inferred further?

We have

CL (W& (x0, R) — R) < u(x0) < Cy ( inf u(x) + W (xo, R) + R) .

B(xo,R

More fancy estimates on the potential would imply more precise
estimates on solutions.
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Sharp rearrangement estimate
work with Michat Borowski and Btazej Miasojedow

Suppose ¥ : Ry — R4 is a nondecreasing function, n > 1, a € (0, n),

and
W(wa(X) ::/ r()/—l,l/j r(}z—n/
0 B(x

Then there exist C; = Ci(«,n) > 0 and G, = Gy(«, n) > 0 such that

(Waouf)(t) < G /OO s Ly <C2s% f**(s)) ds

t

F(¥)l dy) dr

7r)

if f:R" — R is measurable and [{x : |f(x)| > t}| < oo for t > 0.
The result is sharp, in the sense that the reverse inequality is true for
any nonnegative and radially decreasing f.
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Sharp rearrangement estimate
work with Michat Borowski and Btazej Miasojedow

Suppose ¥ : Ry — R4 is a nondecreasing function, n > 1, a € (0, n),

and
W(wa(X) ::/ r()/—l,l/j r(}z—n/
0 B(x

Then there exist C; = Ci(«,n) > 0 and G, = Gy(«, n) > 0 such that

(Waouf)(t) < G /OO s Ly <C2s% f**(s)) ds

t

F(¥)l dy) dr

7r)

if f:R" — R is measurable and [{x : |f(x)| > t}| < oo for t > 0.
The result is sharp, in the sense that the reverse inequality is true for
any nonnegative and radially decreasing f.

p-case: [Cianchi, Ann SNS Pisa 2011]
e o e ——————————————————————————————————————————
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Let X(R") and Y(R") be quasi-normed rearrangement invariant spaces and
h: R, — Ry is nondecreasing. Then the following assertions are equivalent.

(i) [Boudedness| There exists a constant ¢ > 0 such that for every
f € X(R") it holds that
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every nonnegative function ¢ € X(0, c0) it holds
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Boundedness of potential W,

Let X(R") and Y(R") be quasi-normed rearrangement invariant spaces and
h: R, — Ry is nondecreasing. Then the following assertions are equivalent.

(i) [Boudedness| There exists a constant ¢ > 0 such that for every
f € X(R") it holds that

AW o)y @y < cllFl|x(mny:

(i) [1-d Hardy-type inequality] There exists a constant ¢ > 0 such that for
every nonnegative function ¢ € X(0, c0) it holds

h (Cl /too sy (57_1 /OS o(y) dy) ds)

Application: transfer regularity from data to solutions
to —divA(x, Du) = f via potential estimates
Good choices of X, Y: Lebesgue, Orlicz (including Llog L), Lorentz,
Marcinkiewicz, Morrey, Campanato, combinations
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e If 11y satisfies (Mx) for some 6 € (0,1), then u is locally Holder
continuous.



Further potential estimates

obtained via similar methods together with Arttu Karppinen

It's a generalized Orlicz version where G(|Dul) is substituted by
©(x,|Dul). Then the relevant counterpart of condition (M) reads

po(B(x,r)) < cra/ o(x, rf71) dx. (Mx)
B(x,r)

Morrey data <= Holder continuity of solutions

Suppose u > 0 is A-superharmonic and p, := —divA(x, Du).

e lfue C,g’f(Q) with certain 6§ € (0,1), then p satisfies (Mx).

e If 11y satisfies (Mx) for some 6 € (0,1), then u is locally Holder

continuous.

See [C., De Filippis, Removable sets... '2020]
and [C., Karppinen, Removable sets... '2021].
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Let's go to systems



Vectorial problem
Notion of solutions * Solutions Obtained as a Limit of Approximation (SOLA)

A map u € Wol’l(Q,Rm) such that [, g(|Du|) dx < oo is called a
SOLA to
—divA(x, Du) = p (S)

if there exists a sequence (u) C W(Q,R™) of local energy
solutions to the systems

—diV.A(X, Duh) = MKp

such that up — u locally in WH1(Q,R™) and (u),) C L®(Q,R™) is a
sequence of maps that converges to u weakly in the sense of
measures and satisfies

limsup |p,|(B) < |u|(B) for B C Q.
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Vectorial problem
Notion of solutions * Solutions Obtained as a Limit of Approximation (SOLA)

A map u € Wol’l(Q,Rm) such that [, g(|Du|) dx < oo is called a
SOLA to
—divA(x, Du) = p (S)

if there exists a sequence (u) C W(Q,R™) of local energy
solutions to the systems

—diV.A(X, Duh) = MKp

such that up — u locally in WH1(Q,R™) and (u),) C L®(Q,R™) is a
sequence of maps that converges to u weakly in the sense of
measures and satisfies

limsup |p,|(B) < |u|(B) for B C Q.

‘Approximable solutions’ differ in regularity and assumed convergence.
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Measure data systems with Orlicz growth 1/2
C., Youn, Zatorska—Goldstein, arXiv:2106.11639

Assume that A : Q x R"™™ — R"™™ js strictly monotone, A(x,0) = 0, and
A satisfies the following conditions

A, €) €= atG(El), AKXl < e (g(€]) + b(x))
for some b € LE(Q). Furthermore, we require A to satisfy
A(x,€) : (Id—wow)¢) >0

fora.a. x € Q, all £ € R™*™ and every vector w € R™ with |w| < 1.
see [Dolzmann, Hungerbiihler, and Miiller, 1997-2000]



Measure data systems with Orlicz growth 1/2
C., Youn, Zatorska—Goldstein, arXiv:2106.11639

Assume that A : Q x R"™™ — R"™™ js strictly monotone, A(x,0) = 0, and
A satisfies the following conditions

A, €) €= atG(El), AKXl < e (g(€]) + b(x))
for some b € LE(Q). Furthermore, we require A to satisfy
Ax,6) : (Id = w@w)¢) >0
fora.a. x € Q, all £ € R™*™ and every vector w € R™ with |w| < 1.

see [Dolzmann, Hungerbiihler, and Miiller, 1997-2000]

We prove existence of approximable solutions to (S). Moreover
1
(i) If G grows so fast that [~ (ﬁ) " dt < 0o (= p > n), then any
approximable solution u is a weak solution.
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Measure data systems with Orlicz growth 2/2
C., Youn, Zatorska—Goldstein, arXiv:2106.11639

1

(i) If G grows so slowly that [~ (ﬁ) " dt = oo holds, we have

lul € L"O>(Q)  and  |Dul| € L"0)>2(Q).
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1

(i) If G grows so slowly that [~ (ﬁ) " dt = oo holds, we have

lul € L70>°(Q)  and  |Du| e L%O)>(Q).

(iii) Let W,(t) := HG((:)L and G grows fast enough to satisfy

© dt
— <X ~p>2-— 1L
/ (1) P n

Then each approximable solution u to (S) satisfies u € W1(Q,R™) and
Jo g(|Dul) dx < oo, hence it is a SOLA.
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Assumptions for potential estimates

Vectorial problem

We investigate solutions u : 2 — R™ to the problem

—divA(x,Du) =p in Q,
u=0 on 90N
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with a datum p being a vector-valued bounded Radon measure,



Assumptions for potential estimates

Vectorial problem

We investigate solutions u : 2 — R™ to the problem

{—diVA(x, Du)=p in Q, (s)

u=0 on 00
with a datum p being a vector-valued bounded Radon measure,

G e Cz((O,oo)) NC(R4), g = G’ is increasing and g € A, N V3, and
A Q x RM™XM 5 RMXM is assumed to admit a form

g(l€])
€]

with continuous weight a: Q — [c,, C5], 0 < c; < C,.

Alx,€) = a(x) 5o €

Existence result was provided for more general class of problems.
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Estimates for SOLA to the vectorial problem
Theorem by C, Youn, Zatorska-Goldstein, arXiv:2102.09313

Suppose u : Q2 — R™ is a local SOLA to —divA(x, Du) = p with A
as prescribed, and p is bounded. Let B,(xp) € Q with r < Ry for
some Ry = Ro(data). If W (xo, r) is finite, then xg is a Lebesgue's
point of u and

lu(x0) — (u)B,(x)| < C (W%(XOJ) +]{3( )|U — (1), (x0)] dX)
r{(Xo

holds for C > 0 depending only on data. In particular, we have the
following pointwise estimate

lu(xo)| < C W’é(xo,r) —I—][ lu(x)|dx | .
B (x0)
p-Laplace problem: [Kuusi&Mingione, JEMS 2018]
e e ———————————————————————————————————————————————————————



Consequences 1/2

VMO criterion
Let u be a SOLA to —divA(x, Du) = p and let B.(x) € Q. If

lim og™! (M(BQ(XO))> =0,

0—0 Q"il

then u has vanishing mean oscillations at xp, i.e.
lim,—s0 7[ lu — (u)B,(x)| dx = 0.
Bo(x0)



Consequences 1/2

VMO criterion
Let u be a SOLA to —divA(x, Du) = p and let B.(x) € Q. If

lim og™! (M(BQ(XO))> =0,

0—0 Q"il
then u has vanishing mean oscillations at xp, i.e.

lim,—s0 7[ lu — (u)B,(x)| dx = 0.
By (x0)

Continuity criterion

Suppose u be a SOLA to —divA(x, Du) = p and B,(xp) € Q. If
limy 0 SUPxeB, (x) W (X, @) = 0, then u is continuous in B,(xp).
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Consequences 1/2

VMO criterion
Let u be a SOLA to —divA(x, Du) = p and let B.(x) € Q. If

lim og™! (M(BQ(XO))> =0,

0—0 Q"il

then u has vanishing mean oscillations at xp, i.e.
lim,—s0 7[ lu — (u)B,(x)| dx = 0.
Bo(x0)

Continuity criterion

Suppose u be a SOLA to —divA(x, Du) = p and B,(xp) € Q. If
limy 0 SUPxeB, (x) W (X, @) = 0, then u is continuous in B,(xp).

= any A-harmonic map is continuous

e e e ————————————————————————————————————————————————————————



Consequences 2/2

the same what for the scalar equation results from an upper bound

Lorentz data — continuous solutions ) )
For —div.A(x, Du) = F let f = [F|. If [* tag~t(tnf™(t)) % < oo,
then a SOLA u is continuous.
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ol (B(x,r)) < cr"tg(r’~1), then u is locally Holder continuous.



Consequences 2/2

the same what for the scalar equation results from an upper bound

Lorentz data — continuous solutions ) )
For —div.A(x, Du) = F let f = [F|. If [* tag~t(tnf™(t)) % < oo,
then a SOLA u is continuous.

Morrey data —> Hdlder continuous solutions

If uis a SOLA to —divA(x, Du) = py and

ol (B(x,r)) < cr"tg(r’~1), then u is locally Holder continuous.
4+ natural Marcinkiewicz-type characterization relating to

JINS L(%,oo), 6 € (0,1), implying local Holder continuity of
solutions



Methods

for systems

main tool: 4-harmonic approximation lemma
the approximation of a WC-function by an .A-harmonic map for

weighted operator A of an Orlicz growth being a generalized version
of p-harmonic version from [Kuusi&Mingione, JEMS 2018]

OPEN

subquadratic case

more general structure of the operator
anisotropic problems



Off-topics

(1) PDEs in Anisotropic Musielak-Orlicz spaces

(2) Workshop on Nonuniformly Elliptic Problems
Warsaw, 5-9.09.2022

www.impan.pl/22-nep
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Thank you for your attention!



