Potential estimates for solutions to quasilinear elliptic problems with general growth and regularity consequences

Iwona Chlebicka

& Flavia Giannetti, Yeoghun Youn, Anna Zatorska-Goldstein

MIMUW @ University of Warsaw

Workshop: Regularity for nonlinear diffusion equations. Green functions and functional inequalities Universidad Autónoma de Madrid 16.06.2022

1 of 35

We study

$$-\operatorname{div}\mathcal{A}(x, Du) = \mu$$
 in $\Omega \subset \mathbb{R}^n$

with bounded measure μ and Carathéodory's function \mathcal{A} having Orlicz growth with respect to the second variable.

We study

$$-\operatorname{div} \mathcal{A}(x, Du) = \mu$$
 in $\Omega \subset \mathbb{R}^n$

with bounded measure μ and Carathéodory's function ${\cal A}$ having Orlicz growth with respect to the second variable.

Solutions can be unbounded, but we can control them precisely by a certain potential and infer local properties such as Hölder continuity.

We study

$$-\operatorname{div} \mathcal{A}(x, Du) = \mu$$
 in $\Omega \subset \mathbb{R}^n$

with bounded measure μ and Carathéodory's function ${\cal A}$ having Orlicz growth with respect to the second variable.

Solutions can be unbounded, but we can control them precisely by a certain potential and infer local properties such as Hölder continuity. SCALAR:

C., Giannetti, Zatorska–Goldstein, Wolff potentials and local behaviour of solutions to measure data elliptic problems with Orlicz growth, arXiv:2006.02172

We study

$$-\operatorname{div} \mathcal{A}(x, Du) = \mu$$
 in $\Omega \subset \mathbb{R}^n$

with bounded measure μ and Carathéodory's function ${\cal A}$ having Orlicz growth with respect to the second variable.

Solutions can be unbounded, but we can control them precisely by a certain potential and infer local properties such as Hölder continuity.

SCALAR:

C., Giannetti, Zatorska–Goldstein, Wolff potentials and local behaviour of solutions to measure data elliptic problems with Orlicz growth, arXiv:2006.02172

VECTORIAL:

C., Youn, Zatorska–Goldstein, Wolff potentials and measure data vectorial problems with Orlicz growth, arXiv:2102.09313

C., Y., Z.–G., Measure data systems with Orlicz growth, arXiv:2106.11639

Δ

 $-\Delta u = \mu$

3 of 35

Δ

 $-\Delta u = \mu$

$-\Delta_p u = \mu, \quad 1$

 $-\Delta u = \mu$

$$-\Delta_p u = \mu, \quad 1$$

more!

3 of 35

Aim

Precise transfer of (local) regularity from data to solutions to $-\text{div}\mathcal{A}(x, Du) = \mu$.

A function $u \in W^{1,p}_{loc}(\Omega)$ is called a weak solution to a problem

$$\begin{cases} -\operatorname{div}\mathcal{A}(x, Du) = \mu & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

if $\int_{\Omega} \mathcal{A}(x, Du) \cdot D\phi \, dx = \int_{\Omega} \phi \, d\mu(x) \quad \text{for every } \phi \in C_c^{\infty}(\Omega).$

A function $u \in W^{1,p}_{loc}(\Omega)$ is called a weak solution to a problem

$$\begin{cases} -\operatorname{div} \mathcal{A}(x, Du) = \mu & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

if $\int_{\Omega} \mathcal{A}(x, Du) \cdot D\phi \, dx = \int_{\Omega} \phi \, d\mu(x) \quad \text{for every } \phi \in C_c^{\infty}(\Omega).$

It's too restrictive for arbitrary data!

1

A function $u \in W^{1,p}_{loc}(\Omega)$ is called a weak solution to a problem

$$\begin{cases} -\operatorname{div} \mathcal{A}(x, Du) = \mu & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

if
$$\int_{\Omega} \mathcal{A}(x, Du) \cdot D\phi \, dx = \int_{\Omega} \phi \, d\mu(x)$$
 for every $\phi \in C_c^{\infty}(\Omega)$

It's too restrictive for arbitrary data!

Weak solutions are too restrictive, distributional solutions can be wild... :(

1

C

A function $u \in W^{1,p}_{loc}(\Omega)$ is called a weak solution to a problem

$$\begin{cases} -\operatorname{div} \mathcal{A}(x, Du) = \mu & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

$$\text{if} \quad \int_{\Omega} \mathcal{A}(x, Du) \cdot D\phi \, dx = \int_{\Omega} \phi \, d\mu(x) \quad \text{for every} \ \phi \in C^{\infty}_{c}(\Omega).$$

It's too restrictive for arbitrary data!

Weak solutions are too restrictive, distributional solutions can be wild... :(

...but they can also be almost nice!

Measure data problems with power growth

$$-\Delta_p u = -\operatorname{div}(|Du|^{p-2}Du) = \mu, \qquad 1$$

Measure data problems with power growth

$$-\Delta_p u = -\operatorname{div}(|Du|^{p-2}Du) = \mu, \qquad 1$$

Already for $-\Delta_p u = \delta_0$ in B(0,1) we deal with the so-called fundamental solution

$$G(x) = c_{n,p} \left(|x|^{rac{p-n}{p-1}} - 1
ight) ext{ if } 1$$

which does not belong to $W_0^{1,p}(B(0,1))$, for small p, but we like it!

Measure data problems with power growth

$$-\Delta_p u = -\operatorname{div}(|Du|^{p-2}Du) = \mu, \qquad 1$$

Already for $-\Delta_p u = \delta_0$ in B(0,1) we deal with the so-called fundamental solution

$$G(x) = c_{n,p} \left(|x|^{rac{p-n}{p-1}} - 1
ight) ext{ if } 1$$

which does not belong to $W_0^{1,p}(B(0,1))$, for small p, but we like it!

One may study various kids of very weak solutions:

SOLA (Boccardo&Gallouët '89), renormalized solutions (DiPerna&Lions '89, Boccardo, Giachetti, Diaz, Murat '93), entropy solution (Bénilan, Boccardo, Gallouët, Gariepy, Pierre, Vazquez, Murat '95), or (Kilpeläinen, Kuusi, Tuhola-Kujanpää '11) *A*-superharmonic functions.

Be careful: if $1 , then it is possible that <math>u \notin W_{loc}^{1,1}$.

We study

$$-\mathrm{div}\mathcal{A}(x,Du)=\mu,$$

where $\mathcal{A}(x,\xi) \cdot \xi \simeq G(|\xi|)$

We study

$$-\mathrm{div}\mathcal{A}(x, Du) = \mu,$$

where $\mathcal{A}(x,\xi) \cdot \xi \simeq G(|\xi|) \Leftarrow$ here $G \in \Delta_2 \cap \nabla_2$, e.g. $G_{p,\alpha}(s) = s^p \log^{\alpha}(1+s), 1 .$

We study

$$-\mathrm{div}\mathcal{A}(x, Du) = \mu,$$

where $\mathcal{A}(x,\xi) \cdot \xi \simeq G(|\xi|) \Leftarrow$ here $G \in \Delta_2 \cap \nabla_2$, e.g. $G_{p,\alpha}(s) = s^p \log^{\alpha}(1+s), 1 .$

Scalar problem

We study

$$-\mathrm{div}\mathcal{A}(x, Du) = \mu,$$

where $\mathcal{A}(x,\xi) \cdot \xi \simeq G(|\xi|) \Leftarrow$ here $G \in \Delta_2 \cap \nabla_2$, e.g. $G_{p,\alpha}(s) = s^p \log^{\alpha}(1+s), \ 1 .$

Scalar problem

 μ is a bounded measure, $\mathcal{A}: \Omega \times \mathbb{R}^n \to \mathbb{R}^n$ is a monotone Carathéodory's function, $G \in C^1((0,\infty))$ is a nonnegative, increasing, and convex function such that $G \in \Delta_2 \cap \nabla_2$ and

$$\begin{cases} c_1^{\mathcal{A}} \mathsf{G}(|\xi|) \leq \mathcal{A}(x,\xi) \cdot \xi, \\ |\mathcal{A}(x,\xi)| \leq c_2^{\mathcal{A}} \mathsf{g}(|\xi|), \end{cases}$$

where g is the derivative of G.

7 of 35

Who is called 'a solution'?

\mathcal{A} -harmonicity

A <u>continuous</u> function $u \in W_{loc}^{1,G}(\Omega)$ is an *A*-harmonic function in an open set Ω if it is a (weak) solution to $-\operatorname{div} \mathcal{A}(x, Du) = 0$.

\mathcal{A} -super/subharmonicity

We say that a lower semicontinuous function u is \mathcal{A} -superharmonic if for any $K \Subset \Omega$ and any \mathcal{A} -harmonic $h \in C(\overline{K})$ in K, $u \ge h$ on ∂K implies $u \ge h$ in K (u is \mathcal{A} -subharmonic if (-u) is \mathcal{A} -superharmonic).

Who is called 'a solution'?

\mathcal{A} -harmonicity

A <u>continuous</u> function $u \in W^{1,G}_{loc}(\Omega)$ is an *A*-harmonic function in an open set Ω if it is a (weak) solution to $-\operatorname{div} \mathcal{A}(x, Du) = 0$.

\mathcal{A} -super/subharmonicity

We say that a lower semicontinuous function u is \mathcal{A} -superharmonic if for any $K \Subset \Omega$ and any \mathcal{A} -harmonic $h \in C(\overline{K})$ in K, $u \ge h$ on ∂K implies $u \ge h$ in K (u is \mathcal{A} -subharmonic if (-u) is \mathcal{A} -superharmonic).

An A-superharmonic function

- is defined everywhere,
- can be unbounded,
- can be identified with a distributional solution to a measure data problem.

Who is called 'a solution'?

\mathcal{A} -harmonicity

A <u>continuous</u> function $u \in W_{loc}^{1,G}(\Omega)$ is an *A*-harmonic function in an open set Ω if it is a (weak) solution to $-\operatorname{div} \mathcal{A}(x, Du) = 0$.

\mathcal{A} -super/subharmonicity

We say that a lower semicontinuous function u is \mathcal{A} -superharmonic if for any $K \Subset \Omega$ and any \mathcal{A} -harmonic $h \in C(\overline{K})$ in K, $u \ge h$ on ∂K implies $u \ge h$ in K (u is \mathcal{A} -subharmonic if (-u) is \mathcal{A} -superharmonic).

An A-superharmonic function

- is defined everywhere,
- can be unbounded,
- can be identified with a distributional solution to a measure data problem.

This guy we want to 'control by a potential' and prove its regularity.

Potential estimate in the linear case 1/2 Global case

If u solves $-\Delta u = \mu$ in \mathbb{R}^n , then

$$u(x) = \int_{\mathbb{R}^n} \mathcal{G}(x, y) \, d\mu(y)$$

with Green's function

$$\mathcal{G}(x) = \frac{c_n}{|x-y|^{n-2}} \quad \text{if } n > 2,$$

Potential estimate in the linear case 1/2 Global case

If u solves $-\Delta u = \mu$ in \mathbb{R}^n , then

$$u(x) = \int_{\mathbb{R}^n} \mathcal{G}(x, y) \, d\mu(y)$$

with Green's function

$$\mathcal{G}(x) = \frac{c_n}{|x-y|^{n-2}} \quad \text{if } n > 2,$$

so it can be estimated as follows

$$|u(x)| \lesssim \int_{\mathbb{R}^n} rac{d|\mu|(y)}{|x-y|^{n-2}} =: \mathrm{I}_2(|\mu|)(x) \quad \Leftarrow \mathsf{Riesz} \ \mathsf{potential}$$

Potential estimate in the linear case 2/2

Local behaviour of solutions to $-\Delta u = \mu$

Localized/trucated Riesz potential of a nonnegative measure

$$\begin{split} \mathbf{I}_{2}^{\mu}(x,R) &:= \int_{0}^{R} \frac{|\mu|(B_{\varrho}(x))}{\varrho^{n-2}} \frac{d\varrho}{\varrho} \lesssim_{n} \int_{B_{R}(x)} \frac{d|\mu|(y)}{|x-y|^{n-2}} \\ &\leq \int_{\mathbb{R}^{n}} \frac{d|\mu|(y)}{|x-y|^{n-2}} = \mathbf{I}_{2}(|\mu|)(x) \quad \Leftarrow \text{Riesz potential} \end{split}$$

Then locally

 $|u(x)| \leq C\left(\mathrm{I}_{2}^{\mu}(x,R) + `sth \, not \, that \, much \, important'
ight).$

Potential estimate in the linear case 2/2

Local behaviour of solutions to $-\Delta u = \mu$

Localized/trucated Riesz potential of a nonnegative measure

$$\begin{split} \mathbf{I}_{2}^{\mu}(x,R) &:= \int_{0}^{R} \frac{|\mu|(B_{\varrho}(x))}{\varrho^{n-2}} \frac{d\varrho}{\varrho} \lesssim_{n} \int_{B_{R}(x)} \frac{d|\mu|(y)}{|x-y|^{n-2}} \\ &\leq \int_{\mathbb{R}^{n}} \frac{d|\mu|(y)}{|x-y|^{n-2}} = \mathbf{I}_{2}(|\mu|)(x) \quad \Leftarrow \text{Riesz potential} \end{split}$$

Then locally

 $|u(x)| \leq C\left(\mathrm{I}_{2}^{\mu}(x,R) + `sth \, not \, that \, much \, important'
ight).$

Potential estimate in the power growth case

 $-\Delta_p u = -\operatorname{div}(|Du|^{p-2}Du) = \mu \text{ for } 1$

Expecting

 $|u(x)| \leq C \left(\mathcal{W}_p^{\mu}(x, R) + \text{'sth}(u, R) \text{ not that much important'} \right),$

we have to employ another potential

$$\mathcal{W}^{\mu}_{p}(x,R) = \int_{0}^{R} \left(\frac{|\mu|(B_{\varrho}(x))}{\varrho^{n-1}}\right)^{\frac{1}{p-1}} d\varrho$$

called Wolff potential (similar ones were considered by Havin & Maz'ya).

Potential estimate in the power growth case

 $-\Delta_p u = -\operatorname{div}(|Du|^{p-2}Du) = \mu \text{ for } 1$

Expecting

 $|u(x)| \leq C \left(\mathcal{W}^{\mu}_{p}(x,R) + \text{'sth}(u,R) \text{ not that much important'} \right),$

we have to employ another potential

$$\mathcal{W}^{\mu}_{\rho}(x,R) = \int_{0}^{R} \left(\frac{|\mu|(B_{\varrho}(x))}{\varrho^{n-1}} \right)^{rac{1}{\rho-1}} d\varrho$$

called Wolff potential (similar ones were considered by Havin & Maz'ya). For p = 2 we are back with Riesz potential.

Potential estimate in the power growth case

 $-\Delta_p u = -\operatorname{div}(|Du|^{p-2}Du) = \mu \text{ for } 1$

Expecting

 $|u(x)| \leq C \left(\mathcal{W}_p^{\mu}(x, R) + \text{'sth}(u, R) \text{ not that much important'} \right),$

we have to employ another potential

$$\mathcal{W}^{\mu}_{p}(x,R) = \int_{0}^{R} \left(\frac{|\mu|(B_{\varrho}(x))}{\varrho^{n-1}}\right)^{\frac{1}{p-1}} d\varrho$$

called Wolff potential (similar ones were considered by Havin & Maz'ya). For p = 2 we are back with Riesz potential.

Kilpeläinen & Malý ['92,'94] proven that for $\mu \ge 0$ we actually have $\mathcal{W}^{\mu}_{p}(x, R) \lesssim u(x) \lesssim \mathcal{W}^{\mu}_{p}(x, 2R) + 'sth(u, R)'$

next proofs: Trudinger & Wang [2002] and Korte & Kuusi [2010]

Estimates for scalar A-superharmonic functions Theorem by C, Giannetti, Zatorska-Goldstein, arXiv:2006.02172

Assume that u is a nonnegative function being \mathcal{A} -superharmonic and finite a.e. in $B(x_0, R_W) \Subset \Omega$ for some R_W , μ_u is generated by u and g = G'. Let (Havin-Mazy'a-)Wolff potential be given by

$$\mathcal{W}_{G}^{\mu_{u}}(x_{0},R) = \int_{0}^{R} g^{-1}\left(\frac{\mu_{u}(B(x_{0},r))}{r^{n-1}}\right) dr.$$

Estimates for scalar A-superharmonic functions Theorem by C, Giannetti, Zatorska-Goldstein, arXiv:2006.02172

Assume that u is a nonnegative function being \mathcal{A} -superharmonic and finite a.e. in $B(x_0, R_W) \Subset \Omega$ for some R_W , μ_u is generated by u and g = G'. Let (Havin-Mazy'a-)Wolff potential be given by

$$\mathcal{W}_{G}^{\mu_{u}}(x_{0},R) = \int_{0}^{R} g^{-1}\left(\frac{\mu_{u}(B(x_{0},r))}{r^{n-1}}\right) dr.$$

Then for $R \in (0, R_W/2)$ we have

$$C_L\left(\mathcal{W}_G^{\mu_u}(x_0,R)-R\right) \leq u(x_0) \leq C_U\left(\inf_{B(x_0,R)} u(x) + \mathcal{W}_G^{\mu_u}(x_0,R)+R\right)$$

with $C_L, C_U > 0$ depending only on parameters $i_G, s_G, c_1^A, c_2^A, n$.

Estimates for scalar A-superharmonic functions Theorem by C, Giannetti, Zatorska-Goldstein, arXiv:2006.02172

Assume that u is a nonnegative function being \mathcal{A} -superharmonic and finite a.e. in $B(x_0, R_W) \Subset \Omega$ for some R_W , μ_u is generated by u and g = G'. Let (Havin-Mazy'a-)Wolff potential be given by

$$\mathcal{W}_{G}^{\mu_{u}}(x_{0},R) = \int_{0}^{R} g^{-1}\left(\frac{\mu_{u}(B(x_{0},r))}{r^{n-1}}\right) dr.$$

Then for $R \in (0, R_W/2)$ we have

$$C_L\left(\mathcal{W}_G^{\mu_u}(x_0,R)-R\right) \leq u(x_0) \leq C_U\left(\inf_{B(x_0,R)} u(x) + \mathcal{W}_G^{\mu_u}(x_0,R)+R\right)$$

with $C_L, C_U > 0$ depending only on parameters $i_G, s_G, c_1^A, c_2^A, n$.

* Similar upper bound was proven by **Malý** in 2003 for A-superminimizer.

12 of 35

Consequences

Quick remarks

- The result is sharp as the same potential controls bounds from above and from below.
- Let $u \ge 0$ be \mathcal{A} -superharmonic, finite a.e., $\mu_u := -\text{div}\mathcal{A}(x, Du)$. Then u is continuous in $x_0 \iff \mathcal{W}_G^{\mu_u}(x, r)$ is small for $x \in B_{x_0}(r)$.

Consequences

Quick remarks

- The result is sharp as the same potential controls bounds from above and from below.
- Let $u \ge 0$ be \mathcal{A} -superharmonic, finite a.e., $\mu_u := -\text{div}\mathcal{A}(x, Du)$. Then u is continuous in $x_0 \iff \mathcal{W}_{\mathcal{C}}^{\mu_u}(x, r)$ is small for $x \in B_{x_0}(r)$.

Orlicz version of Hedberg–Wolff Theorem

Let μ be a nonnegative bounded measure compactly supported in bounded open set $\Omega \subset \mathbb{R}^n$. Then

$$\mu \in (W_0^{1,G}(\Omega))' \quad \Longleftrightarrow \quad \int_{\Omega} \mathcal{W}_G^{\mu}(x,R) \, d\mu(x) < \infty \text{ for some } R > 0.$$
Fundamental solution

for operators of Zygmund growth

Suppose that $1 , <math>\alpha \in \mathbb{R}$, $0 < a \in L^{\infty}(\Omega)$ separated from zero, and u is a nonnegative A-superharmonic function in Ω , such that

$$-\mathrm{div}\mathcal{A}(x,Du) = -\mathrm{div}\left(a(x)|Du|^{p-2}\log^{\alpha}(e+|Du|)Du\right) = \delta_{0}$$

in the sense of distributions. Then

$$c^{-1}|x|^{-\frac{n-\rho}{p-1}}\log^{-\frac{\alpha}{p-1}}(e+|x|) \le u(x)$$

$$\le c\left(|x|^{-\frac{n-\rho}{p-1}}\log^{-\frac{\alpha}{p-1}}(e+|x|) + \inf_{B(x,2|x|)}u\right).$$

Lorentz spaces

We define the decreasing rearrangement f^* of a measurable function $f:\Omega \to \mathbb{R}$ by

$$f^*(t) = \sup\{s \ge 0 \colon |\{x \in \mathbb{R}^n : f(x) > s\}| > t\},$$

the maximal rearrangement by

$$f^{**}(t) = rac{1}{t} \int_0^t f^*(s) \, ds$$
 and $f^{**}(0) = f^*(0),$

and finally the Lorentz space $L(\alpha, \beta)(\Omega)$ for $\alpha, \beta > 0$ as the space of measurable functions such that

$$\int_0^\infty \left(t^{1/lpha} f^{**}(t)
ight)^eta \; rac{dt}{t} < \infty.$$

Lorentz data \implies continuity of solutions

Let *u* be a nonnegative \mathcal{A} -superharmonic function in Ω and $F_u := -\text{div}\mathcal{A}(x, Du)$ in the sense of distributions. If F_u satisfies

$$\int_0^\infty t^{\frac{1}{n}} g^{-1} \left(t^{\frac{1}{n}} F_u^{**}(t) \right) \frac{dt}{t} < \infty$$

for $\Omega_0 \Subset \Omega$, then $\underline{u \in C(\Omega_0)}$.

Lorentz data \implies continuity of solutions

Let *u* be a nonnegative \mathcal{A} -superharmonic function in Ω and $F_u := -\text{div}\mathcal{A}(x, Du)$ in the sense of distributions. If F_u satisfies

$$\int_{0}^{\infty} t^{\frac{1}{n}} g^{-1} \left(t^{\frac{1}{n}} F_{u}^{**}(t) \right) \frac{dt}{t} < \infty$$

for $\Omega_0 \Subset \Omega$, then $\underline{u \in C(\Omega_0)}$.

.

p-Laplace case If u is nonnegative & p-superharmonic, p > 1, and $F_u \in L(\frac{n}{p}, \frac{1}{p-1})(\Omega)$, then u is continuous.

Lorentz data \implies continuity of solutions

Let *u* be a nonnegative \mathcal{A} -superharmonic function in Ω and $F_u := -\text{div}\mathcal{A}(x, Du)$ in the sense of distributions. If F_u satisfies

$$\int_{0}^{\infty} t^{\frac{1}{n}} g^{-1} \left(t^{\frac{1}{n}} F_{u}^{**}(t) \right) \frac{dt}{t} < \infty$$

for $\Omega_0 \Subset \Omega$, then $\underline{u \in C(\Omega_0)}$.

p-Laplace case If *u* is nonnegative & *p*-superharmonic, p > 1, and $F_u \in L(\frac{n}{p}, \frac{1}{p-1})(\Omega)$, then *u* is continuous. **Zygmund-growth operator case** If $u \ge 0$, $-\operatorname{div}(a(x)|Du|^{p-2}\log^{\alpha}(e + |Du|)Du) = F_u \ge 0$, p > 1, $\alpha \in \mathbb{R}$, and F_u is as above with $g^{-1}(\lambda) \simeq \lambda^{\frac{1}{p-1}}\log^{-\frac{\alpha}{p-1}}(e + \lambda)$, then *u* is continuous.

16 of 35

Morrey data \iff Hölder continuity of solutions

Consider the density condition

$$\mu_{\theta}(B(x,r)) \le cr^{n-1}g(r^{\theta-1}) \simeq r^{n-\theta}G(r^{\theta-1}). \tag{M}$$

Suppose $u \ge 0$ is A-superharmonic and $\mu_u := -\text{div}\mathcal{A}(x, Du)$.

- If $u \in C^{0,\theta}_{loc}(\Omega)$ with certain $\theta \in (0,1)$, then μ satisfies (M).
- If μ_θ satisfies (M) for some θ ∈ (0, 1), then u is locally Hölder continuous.

Morrey data \iff Hölder continuity of solutions

Consider the density condition

$$\mu_{\theta}(B(x,r)) \le cr^{n-1}g(r^{\theta-1}) \simeq r^{n-\theta}G(r^{\theta-1}). \tag{M}$$

Suppose $u \ge 0$ is A-superharmonic and $\mu_u := -\text{div}\mathcal{A}(x, Du)$.

- If $u \in C^{0,\theta}_{loc}(\Omega)$ with certain $\theta \in (0,1)$, then μ satisfies (M).
- If μ_θ satisfies (M) for some θ ∈ (0, 1), then u is locally Hölder continuous.

p-Laplace case

(M) reads $\mu(B(x,r)) \leq cr^{n-p+\theta(p-1)}$

Zygmund-growth operator case (M) reads $\mu(B(x, r)) \leq cr^{n-p+\theta(p-1)} \log^{\alpha}(e + r^{\theta-1})$

Morrey data \iff Hölder continuity of solutions

Consider the density condition

$$\mu_{\theta}(B(x,r)) \le cr^{n-1}g(r^{\theta-1}) \simeq r^{n-\theta}G(r^{\theta-1}). \tag{M}$$

Suppose $u \ge 0$ is A-superharmonic and $\mu_u := -\text{div}\mathcal{A}(x, Du)$.

- If $u \in C^{0,\theta}_{loc}(\Omega)$ with certain $\theta \in (0,1)$, then μ satisfies (M).
- If μ_θ satisfies (M) for some θ ∈ (0, 1), then u is locally Hölder continuous.

p-Laplace case

(M) reads $\mu(B(x,r)) \leq cr^{n-p+\theta(p-1)}$

Zygmund-growth operator case

(M) reads $\mu(B(x,r)) \leq cr^{n-p+\theta(p-1)}\log^{\alpha}(e+r^{\theta-1})$

* we provide natural Marcinkiewicz-type characterization relating to $\mu \in L(\frac{n}{p+\theta(p-1)},\infty)(\Omega)$ for some $\theta \in (0,1)$ implying that μ satisfies (M) and consequently Hölder continuity of a solution.

Methods

for scalar equations

Harmonic analysis

a range of generalized harmonic tools (Maximum principle, Harnack inequality, Poisson modification) prepared for generalized Orlicz framework in [C, Zatorska-Goldstein, Generalized superharmonic functions with strongly nonlinear operator, Potential Analysis]

• Björn, Björn, Nonlinear potential theory on metric spaces, 2011

Wolff potential estimates

influential for our proof: Trudinger&Wang 2002, Korte&Kuusi 2010, for regularity consequences: Kuusi&Mingione 2014.

Methods

for scalar equations

Harmonic analysis

a range of generalized harmonic tools (Maximum principle, Harnack inequality, Poisson modification) prepared for generalized Orlicz framework in [C, Zatorska-Goldstein, Generalized superharmonic functions with strongly nonlinear operator, Potential Analysis]

• Björn, Björn, Nonlinear potential theory on metric spaces, 2011

Wolff potential estimates

influential for our proof: Trudinger&Wang 2002, Korte&Kuusi 2010, for regularity consequences: Kuusi&Mingione 2014.

Important for start: reduction to continuous weak \mathcal{A} -supersolutions

Methods for scalar equations

Lower bound

Figure: w_k is A-harmonic in the interior of the outer dashed annulus and w_{k+1} is A-harmonic in the interior of the inner dashed annulus.

picture by Arttu Karppinen

An A-supersolution generates a nonnegative measure $\mu_{\mu} \in (W^{1,G}_{0}(B_{k}))'$ such that $-\operatorname{div}\mathcal{A}(x, Du) = \mu_u > 0.$ Then having $\theta_k \in C_0^{\infty}(\frac{5}{4}B_{k+1})$ such that $\mathbb{1}_{B_{k+1}} \leq \theta_k \leq \mathbb{1}_{\frac{5}{4}B_{k+1}}$, we set $\mu_{W_k} := \theta_k \mu_{\mu}$ in B_k . We study properties of $w_k \in W^{1,\varphi(\cdot)}_0(B_k)$ being a weak solution to $-\operatorname{div}\mathcal{A}(x, Dw_k) = \mu_{w_k}$ in B_k .

The aim is to keep control over what happens to w_k on $\partial_{\frac{2}{3}}^2 B_k$.

Methods for scalar equations

Upper bound

Figure: v is A-harmonic in ω - the family of dashed annuli. Functions w_k are zero boundary valued in the respective thicker circles.

picture by Arttu Karppinen

Let v be a Poisson modification $v = P(u, \omega)$, i.e.

 $\begin{cases} v \text{ is } \mathcal{A}\text{-harmonic in } \omega, \\ v = u \text{ otherwise.} \end{cases}$

We consider $w_k \in W_0^{1,G}(\frac{4}{3}B_{k+1})$ solving

$$-\operatorname{div}\mathcal{A}(x, Dw_k) = \mu_v \quad \text{in} \quad \frac{4}{3}B_{k+1}$$

20 of 35

What can be inferred further?

We have

$$C_L\left(\mathcal{W}_G^{\mu_u}(x_0,R)-R\right) \leq u(x_0) \leq C_U\left(\inf_{B(x_0,R)} u(x) + \mathcal{W}_G^{\mu_u}(x_0,R)+R\right).$$

What can be inferred further?

We have

$$C_L\left(\mathcal{W}_G^{\mu_u}(x_0,R)-R\right) \leq u(x_0) \leq C_U\left(\inf_{B(x_0,R)} u(x) + \mathcal{W}_G^{\mu_u}(x_0,R)+R\right).$$

More fancy estimates on the potential would imply more precise estimates on solutions.

work with Michał Borowski and Błażej Miasojedow

work with Michał Borowski and Błażej Miasojedow

Suppose $\psi: \mathbb{R}_+ \to \mathbb{R}_+$ is a nondecreasing function, $n \ge 1$, $\alpha \in (0, n)$, and

$$W_{\alpha,\psi}f(x) := \int_0^\infty r^{\alpha-1}\psi\left(r^{\alpha-n}\int_{B(x,r)} |f(y)|\,dy\right)\,dr$$

work with Michał Borowski and Błażej Miasojedow

Suppose $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ is a nondecreasing function, $n \ge 1$, $\alpha \in (0, n)$, and

$$W_{\alpha,\psi}f(x) := \int_0^\infty r^{\alpha-1}\psi\left(r^{\alpha-n}\int_{B(x,r)} |f(y)|\,dy\right)\,dr$$

Then there exist $C_1=C_1(lpha,n)>0$ and $C_2=C_2(lpha,n)>0$ such that

$$(W_{\alpha,\psi}f)^*(t) \leq C_1 \int_t^\infty s^{\frac{\alpha}{n}-1}\psi\left(C_2s^{\frac{\alpha}{n}}f^{**}(s)\right)ds$$

if $f : \mathbb{R}^n \to \mathbb{R}$ is measurable and $|\{x : |f(x)| > t\}| < \infty$ for t > 0. The result is sharp, in the sense that the reverse inequality is true for any nonnegative and radially decreasing f.

work with Michał Borowski and Błażej Miasojedow

Suppose $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ is a nondecreasing function, $n \ge 1$, $\alpha \in (0, n)$, and

$$W_{\alpha,\psi}f(x) := \int_0^\infty r^{\alpha-1}\psi\left(r^{\alpha-n}\int_{B(x,r)} |f(y)|\,dy\right)\,dr$$

Then there exist $C_1=C_1(lpha,n)>0$ and $C_2=C_2(lpha,n)>0$ such that

$$(W_{\alpha,\psi}f)^*(t) \leq C_1 \int_t^\infty s^{\frac{\alpha}{n}-1}\psi\left(C_2s^{\frac{\alpha}{n}}f^{**}(s)\right)ds$$

if $f : \mathbb{R}^n \to \mathbb{R}$ is measurable and $|\{x : |f(x)| > t\}| < \infty$ for t > 0. The result is sharp, in the sense that the reverse inequality is true for any nonnegative and radially decreasing f.

p-case: [Cianchi, Ann SNS Pisa 2011]

Let $X(\mathbb{R}^n)$ and $Y(\mathbb{R}^n)$ be quasi-normed rearrangement invariant spaces and $h: \mathbb{R}_+ \to \mathbb{R}_+$ is nondecreasing. Then the following assertions are equivalent.

Let X(ℝⁿ) and Y(ℝⁿ) be quasi-normed rearrangement invariant spaces and h: ℝ₊ → ℝ₊ is nondecreasing. Then the following assertions are equivalent.
(i) [Boudedness] There exists a constant c > 0 such that for every f ∈ X(ℝⁿ) it holds that

 $||h(W_{\alpha,\psi}f)||_{Y(\mathbb{R}^n)} \leq c||f||_{X(\mathbb{R}^n)};$

Let X(ℝⁿ) and Y(ℝⁿ) be quasi-normed rearrangement invariant spaces and h: ℝ₊ → ℝ₊ is nondecreasing. Then the following assertions are equivalent.
(i) [Boudedness] There exists a constant c > 0 such that for every f ∈ X(ℝⁿ) it holds that

 $||h(W_{\alpha,\psi}f)||_{Y(\mathbb{R}^n)} \leq c||f||_{X(\mathbb{R}^n)};$

(ii) [1-d Hardy-type inequality] There exists a constant c > 0 such that for every nonnegative function $\phi \in \overline{X}(0,\infty)$ it holds

$$\left\|h\left(C_1\int_t^{\infty}s^{\frac{\alpha}{n}-1}\psi\left(s^{\frac{\alpha}{n}-1}\int_0^s\phi(y)\,dy\right)\,ds\right)\right\|_{\overline{Y}(0,\infty)}\leq c||\phi||_{\overline{X}(0,\infty)}.$$

Let X(ℝⁿ) and Y(ℝⁿ) be quasi-normed rearrangement invariant spaces and h: ℝ₊ → ℝ₊ is nondecreasing. Then the following assertions are equivalent.
(i) [Boudedness] There exists a constant c > 0 such that for every f ∈ X(ℝⁿ) it holds that

 $||h(W_{\alpha,\psi}f)||_{Y(\mathbb{R}^n)} \leq c||f||_{X(\mathbb{R}^n)};$

(ii) [1-d Hardy-type inequality] There exists a constant c > 0 such that for every nonnegative function $\phi \in \overline{X}(0,\infty)$ it holds

$$\left\|h\left(C_1\int_t^{\infty}s^{\frac{\alpha}{n}-1}\psi\left(s^{\frac{\alpha}{n}-1}\int_0^s\phi(y)\,dy\right)\,ds\right)\right\|_{\overline{Y}(0,\infty)}\leq c||\phi||_{\overline{X}(0,\infty)}.$$

Application: transfer regularity from data to solutions
to $-\operatorname{div} \mathcal{A}(x, Du) = f$ via potential estimatesGood choices of X, Y: Lebesgue, Orlicz (including $L \log L$), Lorentz,
Marcinkiewicz, Morrey, Campanato, combinations

23 of 35

obtained via similar methods together with Arttu Karppinen

It's a generalized Orlicz version where G(|Du|) is substituted by $\varphi(x, |Du|)$.

obtained via similar methods together with Arttu Karppinen

It's a generalized Orlicz version where G(|Du|) is substituted by $\varphi(x, |Du|)$. Then the relevant counterpart of condition (M) reads

$$\mu_{\theta}(B(x,r)) \leq cr^{-\theta} \int_{B(x,r)} \varphi(x,r^{\theta-1}) \, dx. \tag{Mx}$$

obtained via similar methods together with Arttu Karppinen

It's a generalized Orlicz version where G(|Du|) is substituted by $\varphi(x, |Du|)$. Then the relevant counterpart of condition (M) reads

$$\mu_{\theta}(B(x,r)) \leq cr^{-\theta} \int_{B(x,r)} \varphi(x,r^{\theta-1}) \, dx. \tag{Mx}$$

Morrey data \iff Hölder continuity of solutions Suppose $u \ge 0$ is A-superharmonic and $\mu_u := -\text{div}\mathcal{A}(x, Du)$.

- If $u \in C^{0,\theta}_{loc}(\Omega)$ with certain $\theta \in (0,1)$, then μ satisfies (Mx).
- If μ_θ satisfies (Mx) for some θ ∈ (0,1), then u is locally Hölder continuous.

obtained via similar methods together with Arttu Karppinen

It's a generalized Orlicz version where G(|Du|) is substituted by $\varphi(x, |Du|)$. Then the relevant counterpart of condition (M) reads

$$\mu_{\theta}(B(x,r)) \leq cr^{-\theta} \int_{B(x,r)} \varphi(x,r^{\theta-1}) \, dx. \tag{Mx}$$

Morrey data \iff Hölder continuity of solutions Suppose $u \ge 0$ is A-superharmonic and $\mu_u := -\text{div}\mathcal{A}(x, Du)$.

- If $u \in C^{0,\theta}_{loc}(\Omega)$ with certain $\theta \in (0,1)$, then μ satisfies (Mx).
- If μ_{θ} satisfies (Mx) for some $\theta \in (0, 1)$, then u is locally Hölder continuous.

See [C., De Filippis, Removable sets... '2020] and [C., Karppinen, Removable sets... '2021].

Let's go to systems

Vectorial problem

Notion of solutions * Solutions Obtained as a Limit of Approximation (SOLA)

A map $u \in W^{1,1}_0(\Omega,\mathbb{R}^m)$ such that $\int_\Omega g(|Du|) \, dx < \infty$ is called a SOLA to

$$-\operatorname{div}_{\mathcal{A}}(x, D\boldsymbol{u}) = \boldsymbol{\mu} \tag{S}$$

if there exists a sequence $(\boldsymbol{u}_h) \subset W^{1,G}(\Omega, \mathbb{R}^m)$ of local energy solutions to the systems

 $-\operatorname{div}\mathcal{A}(x, D\boldsymbol{u}_h) = \boldsymbol{\mu}_h$

such that $\boldsymbol{u}_h \to \boldsymbol{u}$ locally in $W^{1,1}(\Omega, \mathbb{R}^m)$ and $(\boldsymbol{\mu}_h) \subset L^{\infty}(\Omega, \mathbb{R}^m)$ is a sequence of maps that converges to $\boldsymbol{\mu}$ weakly in the sense of measures and satisfies

 $\limsup |\boldsymbol{\mu}_h|(B) \le |\boldsymbol{\mu}|(B) \qquad \text{for } B \subset \Omega.$

Vectorial problem

Notion of solutions * Solutions Obtained as a Limit of Approximation (SOLA)

A map $u \in W^{1,1}_0(\Omega,\mathbb{R}^m)$ such that $\int_\Omega g(|Du|) \, dx < \infty$ is called a SOLA to

$$-\mathbf{div}\mathcal{A}(x, D\boldsymbol{u}) = \boldsymbol{\mu}$$
(S)

if there exists a sequence $(\boldsymbol{u}_h) \subset W^{1,G}(\Omega, \mathbb{R}^m)$ of local energy solutions to the systems

 $-\operatorname{div}\mathcal{A}(x, D\boldsymbol{u}_h) = \boldsymbol{\mu}_h$

such that $\boldsymbol{u}_h \to \boldsymbol{u}$ locally in $W^{1,1}(\Omega, \mathbb{R}^m)$ and $(\boldsymbol{\mu}_h) \subset L^{\infty}(\Omega, \mathbb{R}^m)$ is a sequence of maps that converges to $\boldsymbol{\mu}$ weakly in the sense of measures and satisfies

 $\limsup |\boldsymbol{\mu}_h|(B) \le |\boldsymbol{\mu}|(B) \quad \text{for } B \subset \Omega.$

'Approximable solutions' differ in regularity and assumed convergence.

Measure data systems with Orlicz growth 1/2 C., Youn, Zatorska–Goldstein, arXiv:2106.11639

Assume that $\mathcal{A} : \Omega \times \mathbb{R}^{n \times m} \to \mathbb{R}^{n \times m}$ is strictly monotone, $\mathcal{A}(x, 0) = 0$, and \mathcal{A} satisfies the following conditions

 $\mathcal{A}(x,\xi): \xi \geq c_1 G(|\xi|), \qquad |\mathcal{A}(x,\xi)| \leq c_2 \left(g(|\xi|) + b(x)\right),$

for some $b \in L^{\widetilde{G}}(\Omega)$. Furthermore, we require \mathcal{A} to satisfy

$$\mathcal{A}(x,\xi): ((\mathsf{Id} - w \otimes w)\xi) \geq 0$$

for a.a. $x \in \Omega$, all $\xi \in \mathbb{R}^{n \times m}$, and every vector $w \in \mathbb{R}^m$ with $|w| \le 1$. see [Dolzmann, Hungerbühler, and Müller, 1997-2000]

Measure data systems with Orlicz growth 1/2 C., Youn, Zatorska–Goldstein, arXiv:2106.11639

Assume that $\mathcal{A} : \Omega \times \mathbb{R}^{n \times m} \to \mathbb{R}^{n \times m}$ is strictly monotone, $\mathcal{A}(x, 0) = 0$, and \mathcal{A} satisfies the following conditions

 $\mathcal{A}(x,\xi): \xi \geq c_1 G(|\xi|), \qquad |\mathcal{A}(x,\xi)| \leq c_2 \left(g(|\xi|) + b(x)\right),$

for some $b \in L^{\widetilde{G}}(\Omega)$. Furthermore, we require \mathcal{A} to satisfy

$$\mathcal{A}(x,\xi): ig((\mathsf{Id}-w\otimes w)\xiig)\geq 0$$

for a.a. $x \in \Omega$, all $\xi \in \mathbb{R}^{n \times m}$, and every vector $w \in \mathbb{R}^m$ with $|w| \le 1$. see [Dolzmann, Hungerbühler, and Müller, 1997-2000]

We prove existence of approximable solutions to (S). Moreover

(i) If G grows so fast that $\int_{0}^{\infty} \left(\frac{t}{G(t)}\right)^{\frac{1}{n-1}} dt < \infty \ (\approx p > n)$, then any approximable solution u is a weak solution.

C., Youn, Zatorska–Goldstein, arXiv:2106.11639

(ii) If G grows so slowly that $\int_{-\infty}^{\infty} \left(\frac{t}{G(t)}\right)^{\frac{1}{n-1}} dt = \infty$ holds, we have $|\boldsymbol{u}| \in L^{\vartheta_n(\cdot),\infty}(\Omega) \quad \text{and} \quad |D\boldsymbol{u}| \in L^{\theta_n(\cdot),\infty}(\Omega).$

C., Youn, Zatorska–Goldstein, arXiv:2106.11639

(ii) If G grows so slowly that $\int_{0}^{\infty} \left(\frac{t}{G(t)}\right)^{\frac{1}{n-1}} dt = \infty$ holds, we have $|\boldsymbol{u}| \in L^{\vartheta_n(\cdot),\infty}(\Omega) \quad \text{and} \quad |D\boldsymbol{u}| \in L^{\theta_n(\cdot),\infty}(\Omega).$

(iii) Let $\Psi_n(t) := \frac{G(t)}{H_n(t)^{n'}}$ and G grows fast enough to satisfy

<u>a</u>00

$$\int^{\infty} \frac{dt}{\Psi_n(t)} < \infty \qquad \approx p > 2 - \frac{1}{n}.$$

C., Youn, Zatorska–Goldstein, arXiv:2106.11639

(ii) If G grows so slowly that $\int^{\infty} \left(\frac{t}{G(t)}\right)^{\frac{1}{n-1}} dt = \infty$ holds, we have $|\boldsymbol{u}| \in L^{\vartheta_n(\cdot),\infty}(\Omega)$ and $|D\boldsymbol{u}| \in L^{\theta_n(\cdot),\infty}(\Omega).$

(iii) Let $\Psi_n(t) := \frac{G(t)}{H_n(t)^{n'}}$ and G grows fast enough to satisfy

$$\int^{\infty} \frac{dt}{\Psi_n(t)} < \infty \qquad \qquad \approx p > 2 - \frac{1}{n}$$

Then each approximable solution \boldsymbol{u} to (S) satisfies $\boldsymbol{u} \in W^{1,1}(\Omega, \mathbb{R}^m)$ and $\int_{\Omega} g(|D\boldsymbol{u}|) dx < \infty$, hence it is a SOLA.

C., Youn, Zatorska–Goldstein, arXiv:2106.11639

(ii) If G grows so slowly that $\int^{\infty} \left(\frac{t}{G(t)}\right)^{\frac{1}{n-1}} dt = \infty$ holds, we have $|\boldsymbol{u}| \in L^{\vartheta_n(\cdot),\infty}(\Omega)$ and $|D\boldsymbol{u}| \in L^{\theta_n(\cdot),\infty}(\Omega).$

(iii) Let $\Psi_n(t) := \frac{G(t)}{H_n(t)^{n'}}$ and G grows fast enough to satisfy

$$\int^{\infty} \frac{dt}{\Psi_n(t)} < \infty \qquad \qquad \approx p > 2 - \frac{1}{n}$$

Then each approximable solution \boldsymbol{u} to (S) satisfies $\boldsymbol{u} \in W^{1,1}(\Omega, \mathbb{R}^m)$ and $\int_{\Omega} g(|D\boldsymbol{u}|) dx < \infty$, hence it is a SOLA.

Assumptions for potential estimates

Vectorial problem

We investigate solutions $\boldsymbol{u}:\Omega \to \mathbb{R}^m$ to the problem

$$\begin{cases} -\operatorname{div} \mathcal{A}(x, D\boldsymbol{u}) = \boldsymbol{\mu} & \text{in } \Omega, \\ \boldsymbol{u} = 0 & \text{on } \partial \Omega \end{cases}$$
(S)
Assumptions for potential estimates Vectorial problem

We investigate solutions $\boldsymbol{u}:\Omega\to\mathbb{R}^m$ to the problem

$$\begin{cases} -\operatorname{div} \mathcal{A}(x, D \boldsymbol{u}) = \boldsymbol{\mu} & \text{in } \Omega, \\ \boldsymbol{u} = 0 & \text{on } \partial \Omega \end{cases}$$
(S)

with a datum μ being a vector-valued bounded Radon measure,

Assumptions for potential estimates

Vectorial problem

We investigate solutions $\boldsymbol{u}:\Omega \to \mathbb{R}^m$ to the problem

$$\begin{cases} -\operatorname{div} \mathcal{A}(x, D\boldsymbol{u}) = \boldsymbol{\mu} & \text{in } \Omega, \\ \boldsymbol{u} = 0 & \text{on } \partial \Omega \end{cases}$$
(S)

with a datum μ being a vector-valued bounded Radon measure, $G \in C^2((0,\infty)) \cap C(\mathbb{R}_+), g = G'$ is increasing and $g \in \Delta_2 \cap \nabla_2$, and $\mathcal{A} : \Omega \times \mathbb{R}^{n \times m} \to \mathbb{R}^{n \times m}$ is assumed to admit a form

$$\mathcal{A}(x,\xi) = a(x)\frac{g(|\xi|)}{|\xi|}\xi,$$

with continuous weight $a: \Omega \rightarrow [c_a, C_a], 0 < c_a < C_a$.

Existence result was provided for more general class of problems.

Estimates for SOLA to the vectorial problem

Theorem by C, Youn, Zatorska-Goldstein, arXiv:2102.09313

Suppose $\boldsymbol{u}: \Omega \to \mathbb{R}^m$ is a local SOLA to $-\operatorname{div} \mathcal{A}(x, D\boldsymbol{u}) = \boldsymbol{\mu}$ with \mathcal{A} as prescribed, and $\boldsymbol{\mu}$ is bounded. Let $B_r(x_0) \Subset \Omega$ with $r < R_0$ for some $R_0 = R_0(data)$. If $\mathcal{W}^{\boldsymbol{\mu}}_G(x_0, r)$ is finite, then x_0 is a Lebesgue's point of \boldsymbol{u} and

$$|\boldsymbol{u}(x_0) - (\boldsymbol{u})_{B_r(x_0)}| \leq C \left(\mathcal{W}^{\boldsymbol{\mu}}_G(x_0, r) + \int_{B_r(x_0)} |\boldsymbol{u} - (\boldsymbol{u})_{B_r(x_0)}| \, dx \right)$$

holds for C > 0 depending only on *data*. In particular, we have the following pointwise estimate

$$|\boldsymbol{u}(x_0)| \leq C\left(\mathcal{W}^{\boldsymbol{\mu}}_G(x_0,r) + \int_{B_r(x_0)} |\boldsymbol{u}(x)| dx\right).$$

p-Laplace problem: [Kuusi&Mingione, JEMS 2018]

30 of 35

Consequences 1/2

VMO criterion

Let **u** be a SOLA to $-\operatorname{div} \mathcal{A}(x, D\mathbf{u}) = \mu$ and let $B_r(x_0) \Subset \Omega$. If

$$\lim_{\varrho \to 0} \varrho g^{-1} \left(\frac{|\boldsymbol{\mu}|(B_{\varrho}(x_0))}{\varrho^{n-1}} \right) = 0,$$

then \boldsymbol{u} has vanishing mean oscillations at x_0 , i.e. $\lim_{\varrho \to 0} \oint_{B_\varrho(x_0)} |\boldsymbol{u} - (\boldsymbol{u})_{B_\varrho(x_0)}| \, dx = 0.$

Consequences 1/2

VMO criterion

Let **u** be a SOLA to $-\operatorname{div} \mathcal{A}(x, D\mathbf{u}) = \mu$ and let $B_r(x_0) \Subset \Omega$. If

$$\lim_{\varrho \to 0} \varrho g^{-1} \left(\frac{|\boldsymbol{\mu}|(B_{\varrho}(x_0))}{\varrho^{n-1}} \right) = 0,$$

then \boldsymbol{u} has vanishing mean oscillations at x_0 , i.e. $\lim_{\varrho \to 0} \oint_{B_\varrho(x_0)} |\boldsymbol{u} - (\boldsymbol{u})_{B_\varrho(x_0)}| \, dx = 0.$

Continuity criterion

Suppose \boldsymbol{u} be a SOLA to $-\operatorname{div} \mathcal{A}(x, D\boldsymbol{u}) = \boldsymbol{\mu}$ and $B_r(x_0) \Subset \Omega$. If $\lim_{\varrho \to 0} \sup_{x \in B_r(x_0)} \mathcal{W}^{\boldsymbol{\mu}}_{G}(x, \varrho) = 0$, then \boldsymbol{u} is continuous in $B_r(x_0)$.

Consequences 1/2

VMO criterion

Let **u** be a SOLA to $-\operatorname{div} \mathcal{A}(x, D\mathbf{u}) = \mu$ and let $B_r(x_0) \Subset \Omega$. If

$$\lim_{\varrho \to 0} \varrho g^{-1} \left(\frac{|\boldsymbol{\mu}|(B_{\varrho}(x_0))}{\varrho^{n-1}} \right) = 0,$$

then \boldsymbol{u} has vanishing mean oscillations at x_0 , i.e. $\lim_{\varrho \to 0} \oint_{B_\varrho(x_0)} |\boldsymbol{u} - (\boldsymbol{u})_{B_\varrho(x_0)}| \, dx = 0.$

Continuity criterion

Suppose \boldsymbol{u} be a SOLA to $-\operatorname{div} \mathcal{A}(x, D\boldsymbol{u}) = \boldsymbol{\mu}$ and $B_r(x_0) \subseteq \Omega$. If $\lim_{\varrho \to 0} \sup_{x \in B_r(x_0)} \mathcal{W}^{\boldsymbol{\mu}}_G(x, \varrho) = 0$, then \boldsymbol{u} is continuous in $B_r(x_0)$. \implies any \mathcal{A} -harmonic map is continuous

Consequences 2/2

the same what for the scalar equation results from an upper bound

Lorentz data \implies continuous solutions For $-\operatorname{div} \mathcal{A}(x, D\boldsymbol{u}) = \boldsymbol{F}$ let $f = |\boldsymbol{F}|$. If $\int_0^\infty t^{\frac{1}{n}} g^{-1}(t^{\frac{1}{n}} f^{**}(t)) \frac{dt}{t} < \infty$, then a SOLA \boldsymbol{u} is continuous.

Consequences 2/2

the same what for the scalar equation results from an upper bound

Lorentz data \implies continuous solutions For $-\operatorname{div} \mathcal{A}(x, D\boldsymbol{u}) = \boldsymbol{F}$ let $f = |\boldsymbol{F}|$. If $\int_0^\infty t^{\frac{1}{n}} g^{-1}(t^{\frac{1}{n}} f^{**}(t)) \frac{dt}{t} < \infty$, then a SOLA \boldsymbol{u} is continuous.

Morrey data \implies Hölder continuous solutions If \boldsymbol{u} is a SOLA to $-\operatorname{div}_{\mathcal{A}}(x, D\boldsymbol{u}) = \boldsymbol{\mu}_{\theta}$ and $|\boldsymbol{\mu}_{\theta}|(B(x, r)) \leq cr^{n-1}g(r^{\theta-1})$, then \boldsymbol{u} is locally Hölder continuous.

Consequences 2/2

the same what for the scalar equation results from an upper bound

Lorentz data \implies continuous solutions For $-\operatorname{div} \mathcal{A}(x, D\boldsymbol{u}) = \boldsymbol{F}$ let $f = |\boldsymbol{F}|$. If $\int_0^\infty t^{\frac{1}{n}} g^{-1}(t^{\frac{1}{n}} f^{**}(t)) \frac{dt}{t} < \infty$, then a SOLA \boldsymbol{u} is continuous.

Morrey data \implies Hölder continuous solutions If \boldsymbol{u} is a SOLA to $-\operatorname{div} \mathcal{A}(x, D\boldsymbol{u}) = \boldsymbol{\mu}_{\theta}$ and $|\boldsymbol{\mu}_{\theta}|(B(x, r)) \leq cr^{n-1}g(r^{\theta-1})$, then \boldsymbol{u} is locally Hölder continuous. + natural Marcinkiewicz-type characterization relating to $\boldsymbol{\mu} \in L(\frac{n}{p+\theta(p-1)}, \infty), \ \theta \in (0, 1)$, implying local Hölder continuity of solutions

Methods

for systems

main tool: *A*-harmonic approximation lemma

the approximation of a $W^{1,G}$ -function by an A-harmonic map for weighted operator A of an Orlicz growth being a generalized version of *p*-harmonic version from [Kuusi&Mingione, JEMS 2018]

OPEN

subquadratic case more general structure of the operator anisotropic problems

Off-topics

(1) PDEs in Anisotropic Musielak-Orlicz spaces

(2) Workshop on Nonuniformly Elliptic Problems

Warsaw, 5-9.09.2022

www.impan.pl/22-nep

34 of 35

Thank you for your attention!