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Università di Bologna

Madrid, June 14th, 2022.
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A conjecture of De Giorgi (1978)

Let u : Rn → (−1, 1) be a solution of

−∆u = u − u3 in Rn

such that ∂xnu > 0.

Then, at least if n ≤ 8, u is 1D, that is all the level sets {u = t} of u are

hyperplanes.
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Connection with area minimizing surfaces

The energy functional is

EΩ(u) =
1

2

∫
Ω

|∇u|2 +W (u),

where W (u) = 1
4 (1− u2)2.

Theorem (Modica-Mortola)

′′Eε(u) =
1

2
ε

∫
|∇u|2 + 1

ε
W (u)

Γ−→ Per′′
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Classification for classical area minimizing surfaces

Every minimal cone in Rn is an hyperplane, whenever n ≤ 7

In R8 the Simons cone defined as

C := {x ∈ R8 | x21 + · · ·+ x24 = x25 + · · ·+ x28}

is a minimizer for the perimeter;

If E is a minimizer of the perimeter functional in all Rn, then E is a

halfspace, whenever n ≤ 7.

If E is a minimizer of the perimeter functional and ∂E is a graph, then E is a

halfspace, whenever n ≤ 8.
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4 / 25



Classification for classical area minimizing surfaces

Every minimal cone in Rn is an hyperplane, whenever n ≤ 7

In R8 the Simons cone defined as

C := {x ∈ R8 | x21 + · · ·+ x24 = x25 + · · ·+ x28}

is a minimizer for the perimeter;

If E is a minimizer of the perimeter functional in all Rn, then E is a

halfspace, whenever n ≤ 7.

If E is a minimizer of the perimeter functional and ∂E is a graph, then E is a

halfspace, whenever n ≤ 8.

Eleonora Cinti (Univ. Bologna)

Madrid, June 14th, 2022. (joint with X. Cabré, J. Serra, and E. Valdinoci)
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Qs. What about stable sets for the Perimeter (i.e. d2

dt2 |{t=0}
Per(Φt(E )) ≥ 0)?

Embedded stable minimal surfaces in Rn are flat in dimension n = 3

[Fisher-Colbrie and Schoen, Do Carmo and Peng], and n = 4 [Chodosh-Li].

Conjecture Embedded stable minimal surfaces in Rn are flat for 5 ≤ n ≤ 7

OPEN.

Remark

The conjecture holds true for stable cones.

. One of the main obstruction is an energy estimate for stable sets:

Per(E ,BR) ≤ CRn−1.
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5 / 25



Back to De Giorgi conjecture

For Monotone solutions

n = 2, 3

4 ≤ n ≤ 8 if, in addition, u → ±1 for xn → ±∞

counterexample for n ≥ 9.

For Minimizers

2 ≤ n ≤ 7

counterexample for n ≥ 8.
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For stable solutions

for n = 2 TRUE;

counterexample for n ≥ 8;

for 3 ≤ n ≤ 7 OPEN.
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The fractional Allen-Cahn equation

We consider now the same question for the nonlocal problem

(−∆)su = u − u3 in Rn, s ∈ (0, 1).

The fractional Laplacian is defined as

(−∆)su(x) = Cn,s P.V .

∫
Rn

u(x)− u(y)

|x − y |n+2s
dy .
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Modica-Mortola type result

The energy functional is

Es,Ω(u) =

∫∫
Rn×Rn\Ωc×Ωc

|u(x)− u(y)|2

|x − y |n+2s
dx dy +

∫
Ω

W (u)dx .

After a suitable rescaling we have that

Theorem (Savin and Valdinoci)

E ε
s,Ω(u)

Γ−→

Pers 0 < s < 1/2

Per 1/2 ≤ s < 1.
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The case 0 < s < 1/2

We recall that for 0 < s < 1/2

E ε
s (u)

Γ−→ Pers .

What is the fractional perimeter?

Pers(E ) =
1

2
[χE ]W 2s,1 =

∫
E

∫
Rn\E

dx dy

|x − y |n+2s
.
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Classification for nonlocal minimal surfaces

Any nonlocal minimal cone in R2 is an halfplane (Savin-Valdinoci).

Any nonlocal minimal set in R2 is an halfplane (Savin-Valdinoci).

Any nonlocal minimal graph in R3 is an halfplane (Figalli-Valdinoci).

For s ∼ 1/2 and n < 8 any nonlocal minimal set in Rn is an halfspace

(Caffarelli-Valdinoci).
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Back to the fractional Allen-Cahn equation

For 1/2 ≤ s < 1

n = 2, 3 for monotone sol.s and minimizers (Cabré, C., Sire, Valdinoci)

4 ≤ n ≤ 7 for minimizers (Savin);

4 ≤ n ≤ 8 for monotone sol. + limits (Savin).

n = 4, s = 1/2 for monotone solutions (Figalli, Serra)

For 0 < s < 1/2

n = 2 for minimizers (Cabré, Sire, Valdinoci) ;

n = 2, 3 for monotone solutions (Dipierro, Farina, Valdinoci) ;

3 ≤ n ≤ 7 and s ∼ 1/2 for minimizers (Dipierro, Serra, Valdinoci)

3 < n ≤ 8 and s ∼ 1/2 for monotone sol.+ limits (Dipierro,Serra,Valdinoci).
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4 ≤ n ≤ 7 for minimizers (Savin);

4 ≤ n ≤ 8 for monotone sol. + limits (Savin).

n = 4, s = 1/2 for monotone solutions (Figalli, Serra)

For 0 < s < 1/2

n = 2 for minimizers (Cabré, Sire, Valdinoci) ;
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12 / 25



Back to the fractional Allen-Cahn equation

For 1/2 ≤ s < 1

n = 2, 3 for monotone sol.s and minimizers (Cabré, C., Sire, Valdinoci)
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The low-dimensional case

Principal ingredients in the proof of the De Giorgi conjecture in low

dimensions:

Stability of solutions;

Energy estimate:

Es,BR
(u) ≤ CR2 logR;

Liouville-type result.
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The high-dimensional case

If n > 3 the proof is more involved and needs several ingredients:

convergence (in the Hausdorff sense) of the blow-downs of solutions to area

minimizing surfaces;

classification of area minimizing surfaces;

improvement of flatness.
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Remark

The following implication holds for all s ∈ (0, 1]:

Stable sol’ns in Rn−1 are 1D

and

Minimizers in Rn are 1D

 ⇒ Monotone sol’ns in Rn are 1D.
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What about stable objects?

Theorem (C.,Serra, Valdinoci (2019))

Let E be a stable set for the s-perimeter in B4R .

Then,

Pers,BR
(E ) ≤ C (n, s)Rn−2s ;

PerBR
(E ) ≤ C (n, s)Rn−1.

Corollary (C.,Serra, Valdinoci (2019))

Let E be stable set for the s-perimeter in R2. Then E is an half-plane.
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Theorem (Cabré, C., Serra (2020))

There exists s∗ ∈ (0, 1/2) such that for every s ∈ (s∗, 1/2) the following statement

holds. Let Σ ⊂ R3 be a cone with nonempty boundary and C 2 away from 0.

Assume that Σ is stable.

Then, Σ is a half space.

Idea of the proof. The proof combines the following three main ingredients:

uniform perimeter estimates for stable sets of [C., Serra, Valdinoci];

the second variation formula for the s-perimeter;

the fractional Hardy inequality with optimal constant (with the precise

dependence as s ↑ 1/2).
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Theorem (Cabré, C., Serra (2020))

There exists s∗ ∈ (0, 1/2) such that for every s ∈ (s∗, 1/2) the following statement

holds. Let Σ ⊂ R3 be a cone with nonempty boundary and C 2 away from 0.

Assume that Σ is stable.

Then, Σ is a half space.

Idea of the proof. The proof combines the following three main ingredients:

uniform perimeter estimates for stable sets of [C., Serra, Valdinoci];

the second variation formula for the s-perimeter;

the fractional Hardy inequality with optimal constant (with the precise

dependence as s ↑ 1/2).

Eleonora Cinti (Univ. Bologna)

Madrid, June 14th, 2022. (joint with X. Cabré, J. Serra, and E. Valdinoci)
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Fractional Allen-Cahn for 0 < s < 1/2

Theorem 1 (Cabré, C., Serra (2021))

Let 0 < s < 1/2. Let u be a bounded stable solution of (−∆)su = u − u3 in Rn.

Then, ∫
BR

|∇u| dx ≤ Cn,sR
n−1 for all R ≥ 1, (1)

and

Es,BR
(u) ≤ Cn,sR

n−2s for all R ≥ 1. (2)
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Sketch of the Proof of Theorem 1.

To prove the BV -estimate we use the ideas developed in [C., Serra,

Valdinoci] for analogue estimate for stable s-minimal sets;

After interpolation, the BV -estimate ⇒ estimate for the Dirichlet energy.

We prove that for stable solutions

EPot
s (u) ≤ CEDir

s (u).
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19 / 25



Sketch of the Proof of Theorem 1.

To prove the BV -estimate we use the ideas developed in [C., Serra,

Valdinoci] for analogue estimate for stable s-minimal sets;

After interpolation, the BV -estimate ⇒ estimate for the Dirichlet energy.

We prove that for stable solutions

EPot
s (u) ≤ CEDir

s (u).

Eleonora Cinti (Univ. Bologna)

Madrid, June 14th, 2022. (joint with X. Cabré, J. Serra, and E. Valdinoci)
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19 / 25



Theorem 2 (Cabré, C., Serra)

Let u be a bounded stable solution of (−∆)su = u − u3 in Rn.

Then, for any given blow-down sequence uRj (x) = u(Rx) with Rj ↑ ∞, there is a

subsequence Rjm

uRjm
→ χΣ − χΣc in L1(B1),

for some cone Σ that is a stable set for the fractional perimeter Pers under

smooth, compactly supported deformations.

Moreover, for all given t ∈ (−1, 1), we have

dHausdorff

(
{uR ≤ t} ∩ B1 , Σ ∩ B1

)
→ 0.

Sketch of the proof. The proof combines Theorem 1, a monotonicity formula

and density estimates for stable solutions.
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20 / 25



Abstract classification result

Theorem 3 (Cabré, C., Serra)

Assume that for some pair (n,s) with s ∈ (0, 1/2) half spaces are the only stable

cones for the s-perimeter.

Then, every stable solution of (−∆)su = u − u3 in Rn is 1D.

Ingredients of the proof. The proof combines Theorem 2 and the improvement

of flatness result by Dipierro, Serra, Valdinoci.
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Corollary

Let 0 < s < 1/2. Let u be a bounded solution of

(−∆)su = u − u3 in Rn.

Then, u is 1D in the following cases:

n = 3, s close to 1/2, u is stable;

n = 4, s close to 1/2, u is monotone.

Theorem (Figalli, Serra)

Let u be a bounded stable solution of (−∆)1/2u = u − u3 in Rn.

Then u is 1D in the following cases:

n = 3, u is stable;

n = 4, u is monotone.
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Stable minimal surfaces

Pers Per

perimeter estimates ∀ n n = 2, 3, 4

flatness of stable cones n = 2, n = 3 and s ∼ 1/2 2 ≤ n ≤ 7
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Stable solutions to the fractional Allen-Cahn

Case 0 < s < 1/2 Case 1/2 ≤ s ≤ 1

energy estimates ∀ n n = 2, n = 3 and s = 1/2

1D symmetry n = 2, n = 3 and s ∼ 1/2 n = 2, n = 3 and s = 1/2
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Muchas gracias!!
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