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Introduction

The fractional porous medium equation

We consider the following Cauchy problem, that we refer to as
fractional porous medium equation (WFPME for short):{

ut = −(−∆M)s (um) in M × (0,∞) ,

u = u0 on M × {0} ,
(1)

where s ∈ (0,1),m > 1 .

Here, M is a complete, connected,
noncompact Riemannian manifold, and ∆M the Laplace-Beltrami
operator. Here, the fractional power is defined by the spectral
Theorem.

Our goal will be to prove basic well–posedness results for solutions, in
a suitable sense, provided M satisfies appropriate geometric
assumptions, and to prove smoothing effects for data in a suitable
class, larger than L1(M).
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Introduction

The Euclidean case

When M = RN , equation (1) have been introduced and thoroughly
studied by de Pablo, Quiros, Rodriguez, Vázquez, and then by
Bonforte and Vázquez in three seminal papers: Adv. Math. 2011,
CPAM 2012, Adv. Math. 2014.

Among the topics dealt there with I
mention (for the case m > 1, in fact for m > mc for an explicit mc < 1:

existence of a (strong) solution;
conservation of mass;
order preserving property of the evolution;
smoothing effects, namely bounds of the form (p ≥ 1)

∥u(t)∥∞≤ C
∥u0∥

αp
p

tδp
∀t > 0.

Methods rely on representation formulas, i.e. on the explicit expression
of the fractional laplacian in terms of a kernel, and/or on the
Caffarelli-Silvestre extension method.
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Introduction

As such, the above representations are proper of the Euclidean
setting, though extensions are possible. In our work, we shall rely on a
further characterization of the fractional laplacian, meant in the
spectral sense on M.

For example one has, in fact for a large class of
generators but in particular for the Laplacian on a manifold, and for a
suitable class of functions f :

(−∆M)sf (x) =
∫ +∞

0
[Tt f (x)− f (x)]

dt
t1+s

=

∫ +∞

0

(∫
M

kM(t , x , y) (f (y)− f (x)) dm(y)
)

dt
t1+s ,

where m is the Riemannian measure, Tt is the heat semigroup and KM
the heat kernel on M. In fact, the second equality holds if∫

M
kM(t , x , y) dm(y) = 1, ∀x ∈ M

which will follow under our assumptions on M (see below).
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Assumptions on the manifold

Assumptions on M

Assumption 1 (Ricci+Faber-Krahn)

We require that M is an N-dimensional and that:

Ric(M) ≥ −(N − 1)k for some k > 0 . (2)

Besides, we require that ∃c > 0 s.t. the Faber-Krahn inequality holds:

λ1(Ω) ≥ c m(Ω)−
2
N (3)

for any Ω is open, relatively compact, where λ1(Ω) is the first
eigenvalue of −∆M with homogeneous Dirichlet b.c..

Notice that (3) is equivalent to the Nash inequality

∥f∥1+ 2
N

2 ≤ C ∥f∥
2
N
1 ∥∇f∥2

or to the Sobolev inequality, if N ≥ 3.
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Assumptions on the manifold

It is known (see e.g. Hebey 99) that (3) implies, for all ε > 0, x , y ∈ M
and t > 0, Gaussian upper bounds (r(x , y) is geodesic distance):

kM(t , x , y) ≤ C

t
N
2

e− r(x,y)2

(4+ε)t .

It follows that M is s-nonparabolic, in the sense that

Gs
M(x , y) :=

∫ +∞

0

kM(t , x , y)
t1−s dt

(the fractional Green function) is finite for all x , y ∈ M with x ̸= y .
Besides, one has the Euclidean-type bound

Gs
M(x , y) ≤ C

r(x , y)N−2s ∀x , y ∈ M ,

but the decay of of Gs
M at infinity can be much faster. Finally, it can be

shown that the property
∫

M kM(t , x , y) dm(y) = 1 ∀x ∈ M holds.
We prove in Theorem 1 existence of a weak-dual solution under
Assumption 1 and for a class of data larger than L1, in Theorems 2 and
4 smoothing effects for different set of data.
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Assumptions on the manifold

Further assumptions on M

To prove stronger results, we shall sometimes use the following
additional hypotheses.

Assumption 2 (Cartan-Hadamard)

We require that M is an N-dimensional Cartan-Hadamard manifold,
namely that M is complete, simply connected and has everywhere
nonpositive sectional curvature.

If M is Cartan-Hadamard, the Faber-Krahn inequality is always true,
but a lower Ricci bound need not be. Assumption 2 holds both in Rn

and on hyperbolic space HN , the latter being the simply connected,
N-dimensional manifold whose sectional curvatures are everywhere
equal to −1.

We prove, in Theorems 2 and 4, smoothing effects for all times and for
different set of data.
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Assumptions on the manifold

In order to obtain some improved estimates for large times, we will also
require a stricter hypothesis:

Assumption 3 (Upper sectional)

M is Cartan-Hadamard and, besides,

sec(M) ≤ −κ for a given κ > 0 .

Notice that the main example in which Assumption Upper Sectional
holds is the hyperbolic space Hn, which was the object of a specific
study in Berchio, Bonforte, Ganguly, G., Calc. Var 2020.

We prove, in Theorem 3, smoothing effects for large times, for a class
of data larger than L1 ,the bounds being stronger than the ones given
in Theorem 2, and similar to the long time behaviour proved in
Vázquez, JMPA 2015 on HN , and to the smoothing effect by G.,
Muratori, Nonlin. Anal. 2016 for general manifolds satisfying
Assumption 3.
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Weak dual solutions

On the concept of solution

Let Gs
M be the fractional Green function on M. We define, for every

fixed x0 ∈ M, B1(x0) denoting the Riemannian ball centered in x0 of
radius one:

∥f∥L1
x0,G

s
M

:=

∫
B1(x0)

|f (x)| dm(x) +
∫

M\B1(x0)
|f (x)|Gs

M(x , x0)dm(x) .

Accordingly, we introduce the following space:

L1
Gs

M
(M) :=

{
f : M → R measurable : sup

x0∈M
∥f∥L1

x0,G
s
M

< +∞

}
,

endowed with the norm

∥f∥L1
Gs

M

:= sup
x0∈M

∥f∥L1
x0,G

s
M

.
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Weak dual solutions

The definition of weak dual solution is based on the observation that
applying the operator (−∆M)−s to both sides of the equation we would
formally obtain the “dual equation”

∂t
[
(−∆M)−su

]
+ um = 0 .

Definition 1

Let u0 ∈ L1
Gs

M
(M), with u0 ≥ 0. We say that u is a Weak Dual Solution

(WDS) to problem (1) if, for every T > 0:
u ∈ C0([0,T ];L1

x0,Gs
M
(M)) for all x0 ∈ M;

um ∈ L1((0,T );L1
loc(M));

∫ T

0

∫
M
∂tψ (−∆M)−su dm dt −

∫ T

0

∫
M

um ψ dm dt = 0

for every test function ψ ∈ C1
c ((0,T );L∞

c (M));

u(0, ·) = u0 a.e. in M.
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Initial data

On the class of data

The following results are taken from Berchio, Bonforte, G., Muratori,
preprint 2021.

Under Assumption 1, it clearly holds L1(M) ⊆ L1
Gs

M
(M), and

L1
Gs

M
(M) ⊆ L1

x0,Gs
M
(M) is clear by definition. One may then wonder

whether those spaces actually coincide. The answer is negative. In
fact we prove what follows:

Proposition

Let M satisfy Assumption 1. Then one has:

L1(M) ⊊ L1
Gs

M
(M) ⊊ L1

x0,Gs
M
(M) for all x0 ∈ M,

with strict inclusions.

The result is proven by providing explicit functions which belong to one
space but not the other ones.
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Initial data

In order to highlight the admissible decay rate for the kind of initial data
we deal with, we provide some sufficient conditions for a function to
belong to L1

Gs
M
(M) in the very special cases of M = RN or M = HN .

Proposition

Let either M = RN or M = HN , and let u0 ∈ L∞(M). Then, sufficient
conditions for u0 to belong to L1

Gs
M
(M) are the following:

M = RN and |u0(x)| ≤
C
|x |a

for all |x |≥ R, for some a > 2s;

M = HN and |u0(x)| ≤
C

(r(x ,o))a for all r(x ,o) ≥ R, for some

a > s.

In both cases, initial data are allowed to decay qualitatively quite
slower than functions in L1(M): the requested bound is dimension
independent when M = RN , whereas functions in L1(HN) are expected
to decay faster than e−r(x ,o)(N−1).
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Results

Main results

Let us now state the results mentioned above.

Theorem 1 (Existence of a WDS for data in L1
Gs

M
)

Let M satisfy Assumption 1, and let u0 be any nonnegative initial
datum such that u0 ∈ L1

Gs
M
(M). Then there exists a weak dual solution

to problem (1), in the sense of Definition 1.

WDS are obtained as monotone limits of mild solutions in
L1(M) ∩ L∞(M) associated to a monotone sequence of initial data.

Mild solution with “good” data enjoy well-known properties and, by
adapting Bonforte-Vázquez, Nonlin. Anal. 2016, it can be shown that
such solution are WDS. Fundamental properties of solutions are then
proved.
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Results

Let us define the exponent ϑ1 := (2s + N(m − 1))−1 and state our
L1-L∞ smoothing estimates.

Theorem 2 (Smoothing effects for data in L1(M))

Let M satisfy Assumption 1. Let u be the WDS to (1), constructed in
Theorem 1, corresponding to u0 ∈ L1(M), u0 ≥ 0. Then

∥u(t)∥∞ ≤ C

(
∥u(t)∥2sϑ1

1
tNϑ1

∨ ∥u0∥1)

)
≤ C

(
∥u0∥2sϑ1

1
tNϑ1

∨ ∥u0∥1

)
∀t > 0 .

If, in addition, M satisfies Assumption 2, then we have

∥u(t)∥∞ ≤ C
∥u(t)∥2sϑ1

1
tNϑ1

≤ C
∥u0∥2sϑ1

1
tNϑ1

∀t > 0 .
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Results

If we require Assumption 3 as well, the bounds for long time improve:

Theorem 3

Assume that M also satisfies Assumption 3 (and u0 ̸≡ 0). Then:

∥u(t)∥∞ ≤ C

t
1

m−1

[
log
(

t ∥u0∥m−1
1

)] s
m−1 ∀t ≥ t0(u0)

In fact, the long-time behaviour even of the linear, non-fractional heat
equation is faster than in RN (exponential!).

A similar behaviour has been noticed on HN and related manifolds, in
the non-fractional, non-linear situation, by Vázquez, JMPA 2015, G.,
Muratori, Vázquez, Adv. Math. 2017, G., Muratori, Vázquez, Math.
Ann. 2019. The corresponding bounds are sharp when s = 1. We
don’t know if they are here (no known Barenblatt, nor barriers!).
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Results

When enlarging the class of allowed initial data, i.e. when dealing with
the space L1

Gs
M
(M) in place of L1(M), we obtain the following L1

Gs
M

-L∞

smoothing estimates.

Theorem 4 (Smoothing effects for data in L1
Gs

M
)

Let M satisfy Assumption 1. Let u be the WDS to (1), constructed in
Theorem 1, corresponding to u0 ∈ L1

Gs
M
(M), u0 ≥ 0. Then:

∥u(t)∥L∞(M) ≤ C1

∥u(t)∥2sϑ1
L1
Gs

M

tNϑ1
∨ ∥u0∥L1

Gs
M

 ≤ C2

∥u0∥2sϑ1
L1
Gs

M

tNϑ1
∨ ∥u0∥L1

Gs
M

 ∀t > 0 .

If M also satisfies Assumption 2 (and u0 ̸≡ 0), then

∥u(t)∥L∞(M) ≤ C3

∥u0∥
1
m
L1
Gs

M

t
1
m

∀t ≥ ∥u0∥
−(m−1)
L1
Gs

M

.
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Results

Remark
It is remarkable that the exponents in (4) are the Euclidean ones
corresponding to the unweighted L1 space, though even in RN the
space of data is larger.

It is however an open problem to determine the largest possible
class of data for which solutions, possibly in the distributional
sense, exist.

This problem has been solved in the Euclidean, non-fractional
case in Bénilan, Crandall, Pierre, Indiana 1984, and “almost
solved” in certain class of manifolds in G., Muratori, Punzo, JMPA
2018. The fractional setting is still not completely solved even in
the Euclidean case.

It is impossible to enter into details of the proof. But it might be
instructive to state a couple of crucial Lemmata, to have a hint of the
necessary tools.
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Two lemmata

Assume Assumptions 2 or 3. It is first fundamental to compare the
Green function on M (and its integrals over geodesic balls) with the
Green function on the associated space form Mκ (i.e. the hyperbolic
space of constant curvature −κ, or Rn if κ = 0).

Lemma

Let M satisfy Assumption 3 for some κ ≥ 0, and let Mκ be the space
form of curvature equal to −κ, mMκ its volume measure and Gs

Mκ
its

fractional Green function. Then, for all r > 0 and all o ∈ M, we have∫
Br (o)

Gs
M(x ,o)dm(x) ≤

∫
Br (oc)

Gs
Mκ

(x ,oc)dmMκ(x) ,

where oκ stands for any pole in Mκ and Br (oκ) ⊂ Mκ for the geodesic
ball of radius r in centered at oκ. Furthermore, we also have that

Gs
M(x , y) ≤ Gs

Mκ
(xκ, yκ)

for all x , y ∈ M and their corresponding transplanted points xκ, yκ ∈ Mc
with respect to polar coordinates centered at o and oκ, respectively.
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Two lemmata

The above Lemma is nontrivial since when requiring a curvature
bound Gs

M and the volume measure have opposite monotonicity.

To
solve the issue, it is necessary to use the representation of the
fractional Green function in terms of the semigroup:

Gs
M(x , y) := c

∫ +∞

0

kM(t , x , y)
t1−s dt

so that∫
Br (o)

Gs
M(y ,o)dm(y) = c

∫ +∞

0

1
t1−s

(∫
Br (o)

kM(t , y ,o)dm(y)

)
dt.

One then notice that
∫

Br (o) kM(t , y ,o)dm(y) solves{
∂tu = ∆Mu in M × (0,+∞) ,

u(0, ·) = χBr (o) in M .

and concludes using known Hessian comparison Theorems.
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Two lemmata

The next (and last!) Lemma might look obvious, but is very delicate:
fractional potentials behave like the fractional Green function at infinity.

Lemma

Let M satisfy Assumption 1. Let ψ ∈ L∞
c (M) be nonnegative and s.t.

supp(ψ) ⊆ Bσ(x0) for some 0 < σ < 1 and x0 ∈ M. Then:

C ∥ψ∥1

(
1 ∧ r(x0, x)N−2s

)
Gs

M(x , x0) ≤

≤ (−∆M)−sψ(x) ≤ C ∥ψ∥∞ σN Gs
M(x , x0) ∀x ∈ M \ {x0} .

The dependence on the radius σ is needed. The proof depends
strongly on Li-Yau estimates: if v is a positive solution to the heat
equation on M, then

v(t1, x1) ≤ c0

(
t2
t1

)β

v(t2, x2)ec1
r(x1,x2)

t2−t1
+c2(t2−t1)

for all 0 < t1 < t2 < 3 and all x1, x2 ∈ M.
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Two lemmata

Open problems

Solutions that may change sign: Extend our results to signed
solutions. Also investigate whether extension methods as in
Banica, González, Sáez, Rev. Mat. Iberoam. 2015, can be
applied.

Uniqueness: Show that WDS are unique, not only the ones
obtained by limits of monotone approximations, as done here.
Such result is known from G., Muratori, Punzo, Calc. Var. 2015 in
the Euclidean case for very weak solutions.

Mass conservation: For positive, integrable solutions to (1), prove
that ∥u(t)∥1= ∥u(0)∥1 for all such solutions and all t > 0. Precise
bounds for the fractional Laplacian of a test function should be
proved, which is not elementary on general manifolds.
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Two lemmata

Large data: Characterize the class of data for which a solution
exists, at least on [0,T ].

Large time behaviour: Prove existence of fundamental solutions,
namely positive solutions taking a Dirac delta as initial datum, and
investigate their role in the asymptotic behaviour of general
solutions as holds in the Euclidean case (Vázquez, JEMS 2014).
Global Harnack Principle and convergence in relative error: Prove
(explicit) pointwise upper and lower bounds for solutions in the
spirit of the results in the euclidean setting, e.g. Bonforte,
Vazquez, Adv. Math. 2014 (though for the Fast Diffusion
Equation).

THANKS FOR YOUR ATTENTION!
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