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Introduction

From now on we set: ) C R" with 9 Lipschitz and normal vector vq, and § > 0.

B Classical torsional rigidity:

T(Q) = sup W { —Avg =

= —
PEWI2(2)\ {0} / Vol d
Q

—_

, in€,
vo = 0, onodQ.

B Boundary torsional rigidity functional
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W 2D\ (0) / Vol dx + & / ? dx
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- { , on 0f2.
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I
_



Introduction
[e] le]e]e}

The Problem

Motivation



Introduction
[e]e] le]e}

The Problem

Motivation: Torsion Problem by Saint Venant (1797-1886)

B (i) Rotation of the
cross-sections as rigid
bodies.

B (ii) Warping phenomena,
equal for all the
cross-sections.
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The Problem

Motivation: Torsion Problem by Saint Venant (1797-1886)

B (i) Rotation of the
cross-sections as rigid
bodies.

B (ii) Warping phenomena,
equal for all the
cross-sections.

]
—Avg = 1 y in Q,
vQ = 0, on GQ,

where vq is the so called stress-function.

B The resultant torque T(R2), torsional rigidity, can be expressed as

nm:Lmﬁ

B Let Q" be any circle having the same area as €. Then ([Polya, 50][Makai, 66)
T(Q) < T(Q)
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At the turn of of the 20th century, V. A. Steklov posed the following problem:

Steklov Eigenvalue Problem

—Au = 0, in €,
(Vu,vq) = ou, onodf.
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—Au = 0, in €,
(Vu,vq) = ou, onodf.

Due to the compact embedding W'2(Q) «— L7(0Q) = increasing sequence of
eigenvalues {0, (€2; 0) }ren.

Applications [N. Kuznetsov, T. Kulczycki, M. Kwasnicki, A. Nazarov, S. Poborchi, I. Polterovich, B.
Siudeja, 2014]:
B In engineering or physics: sloshing problem, electric impedance tomography,
stationary heat distribution with flux at the boundary dependent of temperature...
B In ”pure” mathematics: spectral shape optimization, Dirichlet to Neumann oper-
ator...
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The Problem

Motivation: Steklov Eigenvalue Problem

At the turn of of the 20th century, V. A. Steklov posed the following problem:

Steklov Eigenvalue Problem

—Au = 0, in €,
(Vu,vq) = ou, onodf.

Due to the compact embedding W'2(Q) «— L7(0Q) = increasing sequence of
eigenvalues {0, (€2; 0) }ren.

Applications [N. Kuznetsov, T. Kulczycki, M. Kwasnicki, A. Nazarov, S. Poborchi, I. Polterovich, B.
Siudeja, 2014]:
B In engineering or physics: sloshing problem, electric impedance tomography,
stationary heat distribution with flux at the boundary dependent of temperature...
B In ”pure” mathematics: spectral shape optimization, Dirichlet to Neumann oper-
ator...

Among all simply connected plane domains the disc maximizes o> [R. Weinstock 19541,
this is:
a2(Q) < 02 (Q7)
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Let Q C RY with C* boundary 9. We define the strip
we = {x — avq(x),x € 0Q,a € [0,¢)}

and we call . its characteristic function.
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The Problem

Motivation: Limit of a Stationary Reaction-Diffusion Problem

Let Q C RY with C* boundary 9. We define the strip
we = {x — avq(x),x € 0Q,a € [0,¢)}
and we call . its characteristic function.Then, present the following problem:

{ =V - (a(x)Vu® (x)) + Auf (x) + c(x)u® I/ inQ,

a(x)(Vu®,va) + b(x)u® 0 on 9. M

Theorem [J. M. Arrieta, A. Jiménez-Casas, A. Rodriguez-Bernal, 2008]
Set

a=1 b=c=0 A=6" and f. =1.

Then, by taking the limit as ¢ — 0 we get that the unique
solution u. of (1) converges to the solution of

—Au+68*u = 0, inQ,
(Vu,vg) = 1, ondQ.
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First properties

Scaling laws:

B oy s(x) =tugs (2). W T(r8) =NT(06).

Relation to Sobolev constant:

Wh(Q) — LI(89), o { 21\1;/:22, iEN >3,
1 < g < 2%, compact when g # 2%. e, Ry = 2,

We set

. 2
(@ =__int {lelina : lelson =1} >0,

which is the sharp constant for the embedding.

Lemma

The supremum in the torsion functional is attained and

1 (o) T
7o S S ey @
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Proposition: Unconstrained concave problem

We reformulate the functional characterization of T(£2, §) as

T(Q26) =  sup {2/ <pd’}~LN717/ |V<p\2dx752/gpzdx}.
pewlh2(Q) oQ Q Q
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The supremum above is uniquely attained by a non-negative function uo 5 € w2 (),
which is the weak solution of the Neumann boundary value problem

‘{ —Au+8%u

0, in€Q,
(Vu,vq)

1, ondQ.

This is, it satisfies the following Weak Boundary Torsion Problem:

[fnw»m,a, Ve)di+ 8 [quaspd = [y pdH" !, forVe € WH(Q). J
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Proposition: Unconstrained concave problem

We reformulate the functional characterization of T(£2, §) as

T(Q26) =  sup {2/ <pd’}~LN717/ |V<p\2dx752/gpzdx}.
pewlh2(Q) oQ Q Q

The supremum above is uniquely attained by a non-negative function uo 5 € w2 (),
which is the weak solution of the Neumann boundary value problem

‘{ —Au+8%u

0, in€Q,
(Vu,vq)

1, ondQ.

This is, it satisfies the following Weak Boundary Torsion Problem:

[fnw»m,a, Ve)di+ 8 [quaspd = [y pdH" !, forVe € WH(Q). J

Finally, we also have

T(Q;&) = / uQ s d'HN_l.
o0
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Constrained convex problem

Dual formulation [L. Brasco, 2021]

We set

A+(Q):{(¢78)€L2(Q;RN)><L2(Q): —divg+5°¢g >0, inQ }

(p,v) >1, ondQ

whith the conditions intended in weak sense. Then, we have

T(:6)=  min {/ \¢|2dx+52/g2dx}, @
(¢.9)€AT () LJo Q

and the minimum is uniquely attained by the pair (Vuq, s, uq,s)-
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Constrained convex problem

Dual formulation [L. Brasco, 2021]

We set

A+(Q):{(¢78)€L2(Q;RN)><L2(Q): —divg+5°¢g >0, inQ }

(p,v) >1, ondQ

whith the conditions intended in weak sense. Then, we have

T(:6)=  min {/ \¢|2dx+52/g2dx}, @
(¢.9)€AT () LJo Q

and the minimum is uniquely attained by the pair (Vuq, s, uq,s)-

Proof. For every non-negative ¢ € W"2(Q) and every (¢, g) € AT(Q), we get that

2/ npd?—LNflf(/ \V<p|2dx+52/<p2dx) S/ |¢|2dx+52/g2dx,
Elo) Q Q Q Q

by properties of A1 () and Young’s inequality. Now, the constraint ¢ > 0 can be
dropped. The rest follows from arbitrariness of ¢ and (¢, g). O
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Relation to the d-Steklov Eigenvalue

Recall:

in £,

01(Q;6) = min ou, ondQ.

eeEW2(Q) / 2 ,HN
°19]
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2
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Relation to the d-Steklov Eigenvalue

Recall:

in £,

01(Q;6) = min ou, ondQ.

eeEW2(Q) / 2 ,HN
°19]

Due to the compact embedding W'?(Q) — LY(9Q) = increasing sequence of
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Relation to the d-Steklov Eigenvalue

Recall:

0, in £,
ou, onOdf.

Vol|'d 52/ 2 d
/nl olrdt 2" { —Au+ 8%u
—1

01(Q;6) = min (Vu, va)

eeEW2(Q) / 2 ,HN
°19]

Due to the compact embedding W'?(Q) — LY(9Q) = increasing sequence of
eigenvalues {0,(£2;9) }ren.

Notice that by choosing ¢ to be the characteristic function of €2, we obtain

1]

. 2
71(90) <8 o e

and thus lim o0(£2;9) = 0.
5§07t
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Relation to the d-Steklov Eigenvalue

Recall:

01(Q;6) = min
eeEW2(Q) / 2 ,HN
a0

Vol|'d 52/ 2 d
/nl pldet o | ol —Au+ 8
" —1 (Vu,vq)

Il
e
o
2

Due to the compact embedding W'?(Q) — LY(9Q) = increasing sequence of
eigenvalues {0,(£2;9) }ren.

Notice that by choosing ¢ to be the characteristic function of €2, we obtain

12|
HV-1(9)

Remark: Polya type inequality

Applying Holder’s inequality on the boundary integral we get

c1(2;6) T(£2; )
TRvaq) S b

01(Q;6) < 8 and thus lim o0(£2;9) = 0.
5§07t
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Quantitative properties of uq s

Regularity of uq s

(i) The L'(Q) norm of ugq,_ 5 is given by

N—1
/ = o O
Q

62
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Quantitative properties of uq s

Regularity of uq s

(i) The L'(Q) norm of ugq,_ 5 is given by

HY1(0Q)
/S;MQ,(S dx = T

(ii) Tts trace is in L°°(9Q), with the following estimate: for every 2 < g < 2%,

o= TG0
T(Q;0) «
oo < _—
45l o) < € (min{lﬁz}nq(Q)) ’

where C, > 0 is a constant only depending on ¢, which blows-up as g ~\ 2.
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Quantitative properties of uq s

Regularity of uq s

(i) The L'(Q) norm of ugq,_ 5 is given by

HY1(0Q)
/S;MQ,(S dx = T

(ii) Tts trace is in L°°(9Q), with the following estimate: for every 2 < g < 2%,

o= TG0
T(Q;0) «
oo < _—
45l o) < € (min{lﬁz}nq(Q)) ’

where C, > 0 is a constant only depending on ¢, which blows-up as g ~\ 2.
(iii) Maximum principle. We have uq s € L°°(2) and it holds

luc,sllLe @) < |lua,s||Looo5)-
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Quantitative properties of uq s

Regularity of uq s

(i) The L'(Q) norm of ugq,_ 5 is given by

HY1(0Q)
/S;MQ,(S dx = T

(ii) Tts trace is in L°°(9Q), with the following estimate: for every 2 < g < 2%,
42 TG0
lug,s]| <c [ TEy8) «
folemom =2 mind1, 82}, (@) ’
where C, > 0 is a constant only depending on ¢, which blows-up as g ~\ 2.
(iii) Maximum principle. We have uq s € L°°(2) and it holds
llug.sllzo=(0) < llugslleo0)-

Proof. (i) simply follows by testing the weak formulation with the characteristic func-
tion of 2.
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(ii) By Moser’s iteration [L. Braso, E. Parini, 2014]. Is enough to prove the estimate for § = 1, rest of
cases follow by scaling.
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(ii) By Moser’s iteration [L. Braso, E. Parini, 2014]. Is enough to prove the estimate for § = 1, rest of
cases follow by scaling. For simplicity we write u = ugq,; and fix M > Oand 5 > 1, then we insert ¢ = u“';,
where uy = min{u, M}, in the weak formulation as test function

2
(B +1)? B g N—1
< <745 + 1> /anuMd”H .

wh2(Q) a

5;1
Uy
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(ii) By Moser’s iteration [L. Braso, E. Parini, 2014]. Is enough to prove the estimate for § = 1, rest of
cases follow by scaling. For simplicity we write u = ugq,; and fix M > Oand 5 > 1, then we insert ¢ = u“';,
where uy = min{u, M}, in the weak formulation as test function

2 2
1
< <M+l>/ ul aHV .
W|,2(9> 45 o0

5;1
Uy

Recalling trace embedding for 2 < ¢ < 2% we obtain the following reverse Holder inequality:

2
BH1\ 1 q 2
o ([ () ) < (520 f o
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(ii) By Moser’s iteration [L. Braso, E. Parini, 2014]. Is enough to prove the estimate for § = 1, rest of
cases follow by scaling. For simplicity we write u = ugq,; and fix M > Oand 5 > 1, then we insert ¢ = u“';,
where uy = min{u, M}, in the weak formulation as test function

2
(B +1)? B g N—1
< <745 + 1> /anuMd”H .

wlh2(Q) B

5;1
Uy

Recalling trace embedding for 2 < ¢ < 2% we obtain the following reverse Holder inequality:

2
BH1\ 1 q 2
o ([, () ) < (5200 f o

Then, we choose 39 = 1 and 3;1| = % (; + 1), and setting ¥; = ””MHLﬁi(aQ) we get
| tan b
Yo < (— (Bi + 1)) IR AN forevery i € N.
74(S2)
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We start with i = 0 and iterate it n times. Then

L NEED e ]F gy
GO CR N

We finish passing to the limit as n — oo and then as M — oo.




Some Properties of the Torsion Function

[e]e]e] e}

We start with i = 0 and iterate it n times. Then

L NEED e ]F gy
Y”§<nq(ﬂ)> [H(ﬁi“) ] vy o

i=0

We finish passing to the limit as n — oo and then as M — oo.

(iii) Let us set L = ||uq, |1 (a0 and introduce ¢ = (uq,s — L)+ € Wy () as test
function in the weak formulation

/ |V(u9,5 — L)+|2 dx + 52 / uQ,s (MQ7§ - L)+ dx = 0.
Q Q
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We start with i = 0 and iterate it n times. Then

L NEED e ]F gy
Y”§<nq(ﬂ)> [H(ﬁi“) ] vy o

i=0

We finish passing to the limit as n — oo and then as M — oo.

(iii) Let us set L = ||uq, |1 (a0 and introduce ¢ = (uq,s — L)+ € Wy () as test
function in the weak formulation

/ |V(u9,5 — L)+|2 dx + 52 / uQ,s (MQ7§ - L)+ dx = 0.
Q Q
Since both terms are non-negative:

V(ug,s — L)+ =0, and uq,s (ua,s — L)+ =0, a.e.in .
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A few more properties

Monotonicity

For every 0 < o < 1, we have that: uQ,s, > UQ,s,, in Q

Asymptotics for § — 0

Under the previous assumptions we have

HY=1(99)

=0,
€2

Q)

. 2 . 2
51151 [V (6~ ua,6)ll2() =0 and 51_1>I(Y)1+ H5 uQs —

for every 2 < m < +o00. Moreover,

N AR GO
fimm, 07 T(030) = ===
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A few more properties

Monotonicity

For every 0 < o < 1, we have that: uQ,s, > UQ,s,, in Q

Asymptotics for § — 0

Under the previous assumptions we have

HY(69)
lim [|V(6° =0 and lim [ugs— ——=—" =0,
i 196 )l =0 and iy 57uns = PGB
for every 2 < m < +o00. Moreover,
(R~ (0))?

lim 6° 7(Q;06) =
S0+ ( ’ ) |Q|
Remark. With previous estimates we can prove that the “naive” lower bound given
before,

L (HY'(09)) .
ﬁ T S T(Q76)7

. . . s
is actually sharp, recalling the scaling law T(2€), 2) = ' T(Q, §)
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Solution in the Ball

We indicate by I, and K., the modified Bessel functions with index o of first and
second kind, respectively, and by I" the usual Gamma function. We recall that these
functions have the following asymptotic behavior for z converging to 0:

“log (%) for o = 0,

T(a+1) \2 o
( ) w (g> ,  otherwise,
z
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Solution in the Ball

We indicate by I, and K., the modified Bessel functions with index o of first and
second kind, respectively, and by I" the usual Gamma function. We recall that these
functions have the following asymptotic behavior for z converging to 0:

—log (%) , fora =0,
1 Z\“
In(z) v =——— (= and Ka(z) ~ a
T () KO (2)7 apene
z

Exact solution on the ball

Let & > 0 and let B C R be the ball of radius 1, centered at the origin. Then,

o' N2 Inj2—1(6 0)
§Iy/2(6)

and up s is a radially symmetric increasing function. Accordingly, we get

ug,s(x) = Us(|x]) where  Us(o) =

N wy Iy/a—1(6)

T(B;6 :/ ugs dH" ' =
(8:9) o 6 Iv/2(9)

Finally, the function g — U;(g)/o is monotone non-decreasing
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Other exact solutions

Spherical Shells. Let § > 0. For 0 < r < R, we consider the spherical shell
Q= {xE]RN s < | <R}.
Then uq s is a radially symmetric function. This is explicitly given by
uo,s(x) = Vers(|x|), forx € Q,

where N N
Virs(0) = Coo' 2 Iy/-1(80) +Doo' 2 Kyjo_1(d 0),

and the constants Co = Co(r,R,0) # 0 and D = Do(r,R,0) # 0 are explicit.
Accordingly, we get

[Vl*%KN/z(Jr)+R17¥KN/2(5R)} [Rli%ll—’*’ﬂ(‘sR)+r17%l‘—"’/2(5r)]
5172 R'TE [Iya(R) Ko (r) — Inya(r) Kupa(R)]
[rl*%IN/z(ér)+R17%1N/2(5R)} [Rli% Kl—N/Z(éR)+r17%K'—N/2(6r)}

5r' =2 'Y [Ina(r) Knja(R) = Inja(R) Ko 1)

T(Q;0) =

+
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Other exact solutions

Hyperrectangle. Letd > 0andlet 4;,4>,...,0y > 0. If we set

then we have

ug,s(x) = 2 %, for every x = (xi,...,xy) € Q. 3)
Its boundary torsional rigidity is given by
N 1 N1 1 N2
(2 6) = ; s S0 ; FH )],

where

Zk:{xeﬁ s ] zék} and Sk = {xeﬁ 2] = by |x,-|:€,~}.
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Geometric Estimates

® Lower bound in dim 2.

B Lower bound in dim N (Convex sets).

m Upper bound in dim N (Convex sets).



Geometric Properties in dim 2

LetD={x € R* : |x| < 1} and Q ¢ R%.
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LetD = {x € R? : |x| < 1} and Q C R?. Given a point xo € €,

B Riemann Mapping Theorem states that there exists a unique (up to a rotation)
holomorphic isomorphism

foo :D—Q, with f, (0) = xo.

Furthermore, when 9 is C"*“, we know that this is C' in D and

fi(x) #0, for every x € OD. [S. E. Warschawski, 1961]
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Geometric Properties in dim 2

LetD = {x € R? : |x| < 1} and Q C R?. Given a point xo € €,

B Riemann Mapping Theorem states that there exists a unique (up to a rotation)
holomorphic isomorphism

foo :D—Q, with f, (0) = xo.

Furthermore, when 9 is C"*“, we know that this is C' in D and

fi(x) #0, for every x € OD. [S. E. Warschawski, 1961]
B We define the boundary distortion radius of 2 by S

1

: . 1 112 1) 2
= inf [ — d

Ra xffén(zw /@leml H) :
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Geometric Properties in dim 2

LetD = {x € R? : |x| < 1} and Q C R?. Given a point xo € €,

B Riemann Mapping Theorem states that there exists a unique (up to a rotation)
holomorphic isomorphism

foo :D—Q, with f, (0) = xo.

Furthermore, when 9 is C"*“, we know that this is C' in D and

fi(x) #0, for every x € OD. [S. E. Warschawski, 1961]
B We define the boundary distortion radius of 2 by S

1

: . 1 112 1) 2
= inf [ — d

Ra xffén(zw /@leml H) :

B and the inradius : io = sup, cq |f, (0)]-
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Geometric Properties in dim 2

LetD = {x € R? : |x| < 1} and Q C R?. Given a point xo € €,

B Riemann Mapping Theorem states that there exists a unique (up to a rotation)
holomorphic isomorphism

foo :D—Q, with f, (0) = xo.
Furthermore, when 9 is C"*“, we know that this is C' in D and

fi(x) #0, forevery x € OD.  [S.E. Warschawski, 1961]
B We define the boundary distortion radius of 2 by T

1

: . 1 112 1) 2
= inf [ — d

Ra xffén(zw /@leml H) :

B and the inradius : io = sup, cq |f, (0)]-

Remark: As [f,(’o|2 is a subharmonic function, due to G. H. Hardy (1915), we have

that
1 : 1 :
:o<7/ 12 dH! <( /;zcm‘).
I (0)] < <2w “X‘:Q}lfol <\ 75 amlfo\
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Lower bound in dim 2

Geometric Lemma

Let Q C R? be a bounded simply connected open set, with 9Q € C". Then,
9 < 7RG

In particular, if € is a disk of radius R, we have R = R and equality holds.
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Lower bound in dim 2

Geometric Lemma

Let Q C R? be a bounded simply connected open set, with 9Q € C". Then,
9 < 7RG

In particular, if € is a disk of radius R, we have R = R and equality holds.

Proof. Write |
/[f;0|2dW:/ </ [ﬂ0|2d7{'> do.
D 0 {Ix[=e}

|* coincides with the Jacobian determinant of f;,: || = [, |fi|* dw.

and notice that |fy,
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Lower bound in dim 2

Geometric Lemma

Let Q C R? be a bounded simply connected open set, with 9Q € C". Then,
9 < 7RG

In particular, if  is a disk of radius R, we have Ra = R and equality holds.

Proof. Write |
/[f;0|2dW:/ </ [ﬂ0|2d7{'> do.
D 0 {Ix[=e}

|* coincides with the Jacobian determinant of f;,: || = [, |fi|* dw.

and notice that |fy,

Theorem (Lower bound in  C R?)

Let 6 > 0 and let © C R? be a bounded simply connected open set, with C'**
boundary, for some 0 < a < 1. Then,

(aomy Ce) <,

Moreover, equality holds if and only if 2 is a disk.
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Proof: Lower bound dim 2

Let us assume R = 1 and all the remaining cases follow by scaling.
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Proof: Lower bound dim 2

Let us assume R = 1 and all the remaining cases follow by scaling. Then, for Ve > 0 Jxo € €2 such that

= Jon V;o |dH" < 14 e. Now, we use the test function 4 = u o hy,» Where we set

hy, ::fxg1 :Q — D.

We indicate the solution in D as

o' N2 In/a—1(8 0)

) =ts(e) = St

where o = |x]|.
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Proof: Lower bound dim 2

Let us assume R = 1 and all the remaining cases follow by scaling. Then, for Ve > 0 Jxo € €2 such that
ﬁ faD V;o \2 dH' < 1+ . Now, we use the test function % = u o hXO, where we set

—1 .5 T

hy, ::fXU : Q— D.

Observe that @ € W'2(£2), thanks to the properties of fy,. This yields .

—_——
~2 5, 2 [ = 2 2 200 N2 g
1 B A\Vu\ dx 4§ /Qu dx <6[1(5))2 /D|Vu| dw+ 6 /mu U‘\U(u)\ dw

T(2:0) = (/ Edﬂly "\ 0 (H'(69))
oQ

)

We indicate the solution in D as

o' N2 In/a—1(8 0)

) =ts(e) = St

where o = |x]|.
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Proof: Lower bound dim 2

Let us assume R = 1 and all the remaining cases follow by scaling. Then, for Ve > 0 Jxo € €2 such that
ﬁ faD V;o \2 dH' < 1+ . Now, we use the test function % = u o hXO, where we set

—1 .5 T

hy, ::fXU : Q— D.

Observe that @ € W'2(£2), thanks to the properties of fy,. This yields .

—_——
~2 5, 2 [ = 2 2 200 N2 g
1 B A\Vu\ dx 4§ /Qu dx <6[1(5))2 /D|Vu| dw+ 6 /mu U‘\U(u)\ dw

T(2:0) = (/" Ed}ﬂ>2 "\ 0 (H'(69))
oQ

In order to estimate () we set

)

We indicate the solution in D as

o' N2 In/a—1(8 0)

B(0) = —— P, ub) =Usle) = —51" 8

2me J{w=er ©

where o = |x]|.




Geometric Estimates
0008000000

Proof: Lower bound dim 2

Let us assume R = 1 and all the remaining cases follow by scaling. Then, for Ve > 0 Jxo € €2 such that
ﬁ faD V;o \2 dH' < 1+ . Now, we use the test function % = u o hXO, where we set
—1 .5 T
hy, ::fXU : Q— D.

Observe that @ € W'2(£2), thanks to the properties of fy,. This yields .

—_——
~2 5, 2 [ = 2 2 200 N2 g
1 B A\Vu\ dx 4§ /Qu dx <6[1(5))2 /D|Vu| dw+ 6 /mu U‘\U(u)\ dw

T(2:0) = (/" Ed}ﬂ>2 "\ 0 (H'(69))
oQ

In order to estimate (1) we set We indicate the solution in D as

)

o' N2 In/a—1(8 0)

B(0) = —— P, ub) =Usle) = —51" 8

2me J{w=er ©

By monotonicity of o — ®(p) we obtain where o = |x].

1 1
/ u* If! (W)|2dw =27 / u* P(p) odo < (27r / uzgdg) P(1) < (1+¢) /uzdx.
B, (0) 0 0 0 D
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Proof: Lower bound dim 2

Let us assume R = 1 and all the remaining cases follow by scaling. Then, for Ve > 0 Jxo € €2 such that
ﬁ faD V;o \2 dH' < 1+ . Now, we use the test function % = u o hXO, where we set

—1 .5 T

hy, ::fXU : Q— D.

Observe that @ € W'2(£2), thanks to the properties of fy,. This yields .

—_——
~2 5, 2 [ = 2 2 200 N2 g
1 B A\Vu\ dx 4§ /Qu dx <6[1(5))2 /D|Vu| dw+ 6 /mu U‘\U(u)\ dw

T(2:0) = (/" Ed}ﬂ>2 "\ 0 (H'(69))
oQ

In order to estimate () we set

)

We indicate the solution in D as

o' N2 In/a—1(8 0)

B(0) = —— P, ub) =Usle) = —51" 8

2me J{w=er ©

By monotonicity of o — ®(p) we obtain where o = |x].

1 1
/ u* If! (W)|2dw =27 / u* P(p) odo < (27r / uzgdg) P(1) < (1+¢) /uzdx.
B, (0) 0 0 0 D

We insert this estimate in the torsion functional and use that « is optimal for the disk to get

1 2 2
. <<611(5)>2 /DDudH +4 s/Dudw

T(2;8) — \ Io(9) (H' (09))?
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Convex sets N-dim

Theorem (Lower bound for convex sets)

Letd > 0 and let © C RY be an open bounded convex set. Then,

HY ' (00)
§ tanh (0rg) "

Moreover, the estimate is sharp in the following sense: we have

nlggo T(Q';’_l(jv)j?ggi(; ra,) = é, where Q, := (—n,n)" "' x (=1,1).

T(9;6) >
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Convex sets N-dim

Theorem (Lower bound for convex sets)

Letd > 0 and let © C RY be an open bounded convex set. Then,
KN (09)
§ tanh (0rg) "

Moreover, the estimate is sharp in the following sense: we have

nlggo T(Q';’_l(jv)j?ggi(; ra,) = é, where Q, := (—n,n)" "' x (=1,1).

T(9;6) >

Method of interior parallels [E. Makai, 1954][G. Polya, 1960]

PN
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Convex sets N-dim

Theorem (Lower bound for convex sets)

Letd > 0 and let © C RY be an open bounded convex set. Then,
KN (09)
§ tanh (0rg) "

Moreover, the estimate is sharp in the following sense: we have

nlggo T(Q';’_l(jv)j?ggi(; ra,) = é, where Q, := (—n,n)" "' x (=1,1).

T(9;6) >

Method of interior parallels [E. Makai, 1954][G. Polya, 1960]

S

‘ 105 W

PN
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1D Lemma

Lemma

For every § > 0, we have

) (£(0))* 1

sup = .
pEWL2(D) /|<p'|2dt+52 /(pz " 0 tanh(d)
1

I

Moreover, the maximum is attained by

1 (cosh(dr) .
u(t) = 5 (m — 51nh(61)) ,
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1D Lemma

Lemma

For every § > 0, we have

) (£(0))* 1

sup = .
pEWL2(D) /|<,0’|2 dr i 8 /(pz " 0 tanh(d)
I 1

Moreover, the maximum is attained by

1 (cosh(dr) .
u(t) = 5 (m — 51nh(61)) ,

Proof. We rephrase the maximization problem to

a(6)= sup &wm—ﬂwwnf/fm}
pewh2(1) 1 1

which is the weak formulation of

0" +8¢ = 0, inl,
¢'0) = -1,
(1) = 0.
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Proof Theorem: Lower bounds for convex sets.

Without loss of generality we prove it for rq = 1.
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Proof Theorem: Lower bounds for convex sets.

Without loss of generality we prove it for rq = 1.

We introduce ¢(x) = u;(do(x)) as test function in the torsion functional, where u;
is the solution of 1 dimensional problem.
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Proof Theorem: Lower bounds for convex sets.

Without loss of generality we prove it for rq = 1.

We introduce ¢(x) = u;(do(x)) as test function in the torsion functional, where u;
is the solution of 1 dimensional problem. Then, by Coarea Formula and the fact that
|Vda| =1ae.inQ,

T(:6) > ([, e0e) _ wOrerew)
lﬂvw%k+6féw%u / [l ()P + 8% (ur()”] +~" (9%)
. (1(0))? 21 (00)

[ [0r + 8 ] a

We have used that H¥~'(9,) < HN~'(9Q) for t € (0, rq), which is strict for an
open bounded convex set. The result follows from previous Lemma.
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Convex sets: upper bounds N-dim

Recall the dual formulation of the torsion problem:

T(%8) =  min {/ |¢\2dx+62/gzdx},
(p.0)eAt (@) Lo Q

where, AT(Q) = {(¢78) € LX(RY) x 2(Q) : —dv '12; 5525 % (l)i Oi[?gzg }
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Convex sets: upper bounds N-dim

Recall the dual formulation of the torsion problem:

T(%8) =  min {/ |¢\2dx+62/gzdx},
(p.0)eAt (@) Lo Q

where, AT(Q) = {(¢78) € LX(RY) x 2(Q) : —dv '12; 5525 % (l)i Oi[?gzg }

For an open bounded convex set 2 C R", we define its proximal radius by

Lo = inf {R >0 : xg € M(Q) such that Q C BR(xO)}.
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Convex sets: upper bounds N-dim

Recall the dual formulation of the torsion problem:

T(%8) =  min {/ |¢\2dx+62/g2dx},
(p.0)eAt (@) Lo Q

. 2 .
where, AT(Q) = {(0578) € LX(RY) x 2(Q) : —dv dz;r, SQ g(l): 01[?52(2 }

For an open bounded convex set 2 C R", we define its proximal radius by

Lo = inf {R >0 : xg € M(Q) such that Q C BR(xO)}.

Theorem: Upper bound N-dim

Let § > 0 and let  C RY be an open bounded convex set. Then,

7(5:5) < (L‘;)N (m) T(Big: ).

Moreover, equality holds if and only if 2 is a ball.
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Proof: Upper bound N-dim

We assume that the proximal center of 2 coincides with the origin. Then, we set

ro 1 1
Co,s = Ujs — I, = —Vu and = ——u .
Q. 5L (LQ) ®o Cos Vg0 8o Corp Mt

s
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Proof: Upper bound N-dim

We assume that the proximal center of 2 coincides with the origin. Then, we set

ro 1 1
Co,s = Ujs — I, = —Vu and = ——u .
Q. 5L (LQ) ®o Cos Vg0 8o Corp Mt

s

Notice that by construction we have that B, (xo) C € C Brg, (xa). Then,

. 1 .
—div ¢ + (52 g0 = m <_AMBLQ,5 + (52 MBLQ#S) =0, in €2,

)
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Proof: Upper bound N-dim

We assume that the proximal center of 2 coincides with the origin. Then, we set

rQ

1 1
CQ#; = L{SLQ (E) , o= —— VMBLQ,(S and go= — Up,,,5-

CQ ) CQ,5

s

Notice that by construction we have that B, (xo) C € C Brg, (xa). Then,

. 1 .
—div ¢ + (52 g0 = m <_AMBLQ,5 + (52 MBLQ#S) =0, in €2,

)

and, by rescaling, in 02 it holds that

1 1., |x]| 1 1, |x]|
= — U, | > — — o (2
(¢o, vaq) Cos I 5 Lq (LQ (x, voq) > Cos I sto \ I rQ,
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Proof: Upper bound N-dim

We assume that the proximal center of 2 coincides with the origin. Then, we set

rQ

1 1
CQ#; = L{SLQ (E) , o= —— VMBLQ,(S and go= — Up,,,5-

CQ ) CQ,5

s

Notice that by construction we have that B, (xo) C € C Brg, (xa). Then,

. 1 .
—div ¢ + (52 g0 = m <_AMBLQ,5 + (52 MBLQ#S) =0, in €2,

)

and, by rescaling, in 02 it holds that

1 1 ’ |x| 1 1 / \x|
, =— —U — , > — —=U — ,
<¢0 V69> CQ,(S |x| 6 Lo (LQ <)C VBQ> = Cﬂyé |x‘ 6 Lo Lo ra
Now, by monotonicity of ng(g) we estimate the flux of ¢ on the boundary of €2 by

1 ’ ro
> uh, o ().
(¢o, voq) > Corp Yota <LQ>

s
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Proof: Upper bound N-dim

We assume that the proximal center of 2 coincides with the origin. Then, we set

rQ

1 1
CQ#; = L{SLQ (E) , o= —— VMBLQ,(S and go= — Up,,,5-

CQ ) CQ,5

s

Notice that by construction we have that B, (xo) C € C Brg, (xa). Then,

. 1 .
—div ¢ + (52 g0 = m <_AMBLQ,5 + (52 MBLQ#S) =0, in €2,

)

and, by rescaling, in 02 it holds that

1 1 ’ |x| 1 1 / \x|
, =— —U — , > — —=U — ,
<¢0 V69> CQ,(S |x| 6 Lo (LQ <)C VBQ> = Cﬂyé |x‘ 6 Lo Lo ra
Now, by monotonicity of ng(g) we estimate the flux of ¢ on the boundary of €2 by

1 ’ ro
> uh, o ().
(¢o, voq) > Corp Yota <LQ>

s

Recalling the definition of Cq s, we finally obtain that (¢, go) € AT (2). Then result
follows from the application of the Lemma for the dual formulation.



Geometric Estimates

000000000 e

The equality case. It is clear that the equality holds for any ball. Then, we assume that
the inequality holds. In particular, it must be true that

/(MBLQ,g)zdx:/ (uBLnﬁ)zdxA
Q By

Q

Since up, s does not vanish, we finally get that
|BLQ \ Q' =0.

Convexity implies that 2 must coincide with the ball Bz, . O
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The equality case. It is clear that the equality holds for any ball. Then, we assume that
the inequality holds. In particular, it must be true that

/(MBLQ,g)zdx:/ (uBLnﬁ)zdxA
Q By

Q

Since up, s does not vanish, we finally get that
|BLQ \ Q' =0.
Convexity implies that 2 must coincide with the ball Bz, . O

From the previous result, we can get the following sharp geometric estimate, involving
four geometric quantities.

Corollary: Sharp geometric estimate

Let Q c RY be an open bounded convex set. Then, we have

HY =1 (00))> Lo\®  v_
o < (22)

Equality holds if and only if €2 is a ball.



Muchas gracias!
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