A Steklov Version of the Torsional Rigidity

Mikel Ispizua

joint work with Lorenzo Brasco and María del Mar González

mikel.ispizua@uam.es

Workshop: Regularity for nonlinear diffusion equations. Green functions and functional inequalities June 14, 2022

Introduction •0000	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets 0000	Geometric Estimates	End O
The Problem					

Introduction

From now on we set: $\Omega \subset \mathbb{R}^N$ with $\partial \Omega$ Lipschitz and normal vector ν_{Ω} , and $\delta > 0$.

Classical torsional rigidity:

$$T(\Omega) = \sup_{\varphi \in W^{1,2}(\Omega) \setminus \{0\}} \frac{\left(\int_{\Omega} \varphi \, dx\right)^2}{\int_{\Omega} \left|\nabla\varphi\right|^2 \, dx} \quad \rightarrow \quad \left\{ \begin{array}{rrr} -\Delta v_{\Omega} &=& 1, \quad \text{in } \Omega, \\ v_{\Omega} &=& 0, \quad \text{on } \partial\Omega. \end{array} \right.$$

Boundary torsional rigidity functional

$$T(\Omega;\delta) = \sup_{\varphi \in W^{1,2}(\Omega) \setminus \{0\}} \frac{\left(\int_{\partial \Omega} \varphi \, d\mathcal{H}^{N-1}\right)^2}{\int_{\Omega} |\nabla \varphi|^2 \, dx + \delta^2 \int_{\Omega} \varphi^2 \, dx} \quad \to \quad$$

$$\rightarrow \begin{cases} -\Delta u + \delta^2 u = 0, & \text{in } \Omega, \\ \langle \nabla u, \nu_{\Omega} \rangle = 1, & \text{on } \partial \Omega. \end{cases}$$

Introduction 00000	Boundary Torsional Rigidity 00000	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets 0000	Geometric Estimates	End O
The Problem					

Motivation

Introduction 00000	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End O
The Problem					

- (*i*) *Rotation* of the cross-sections as rigid bodies.
- (*ii*) *Warping* phenomena, equal for all the cross-sections.

 $\begin{cases} -\Delta v_{\Omega} = 1, & \text{in } \Omega, \\ v_{\Omega} = 0, & \text{on } \partial \Omega, \end{cases}$

where v_{Ω} is the so called *stress-function*.

The resultant torque $T(\Omega)$, torsional rigidity, can be expressed as

$$T(\Omega) = \int_{\Omega} v_{\Omega} \, dx$$

Let Ω^* be any circle having the same area as Ω . Then ([Polya, 50][Makai, 66]) $T(\Omega) \leq T(\Omega^*)$

Introduction 00000	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End O
The Problem					

- (*i*) *Rotation* of the cross-sections as rigid bodies.
- (*ii*) *Warping* phenomena, equal for all the cross-sections.

$$\left\{ \begin{array}{rrr} -\Delta \nu_{\Omega} &=& 1, \quad \mbox{in } \Omega, \\ \nu_{\Omega} &=& 0, \quad \mbox{on } \partial \Omega, \end{array} \right.$$

where v_{Ω} is the so called *stress-function*.

Final The resultant torque $T(\Omega)$, torsional rigidity, can be expressed as

$$T(\Omega) = \int_{\Omega} v_{\Omega} \, dx$$

Let Ω^* be any circle having the same area as Ω . Then ([Pòlya, 50][Makai, 66]) $T(\Omega) \leq T(\Omega^*)$

Introduction 00000	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End O
The Problem					

- (*i*) *Rotation* of the cross-sections as rigid bodies.
- (*ii*) *Warping* phenomena, equal for all the cross-sections.

$$\begin{cases} -\Delta v_{\Omega} = 1, & \text{in } \Omega, \\ v_{\Omega} = 0, & \text{on } \partial \Omega, \end{cases}$$

where v_{Ω} is the so called *stress-function*.

The resultant torque $T(\Omega)$, torsional rigidity, can be expressed as

$$T(\Omega) = \int_{\Omega} v_{\Omega} \, dx$$

Let Ω^* be any circle having the same area as Ω . Then ([Polya, 50][Makai, 66]) $T(\Omega) \leq T(\Omega^*)$

Introduction 00000	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End O
The Problem					

- (*i*) *Rotation* of the cross-sections as rigid bodies.
- (*ii*) *Warping* phenomena, equal for all the cross-sections.

$$\begin{cases} -\Delta \nu_{\Omega} = 1, & \text{in } \Omega, \\ \nu_{\Omega} = 0, & \text{on } \partial\Omega, \end{cases}$$

where v_{Ω} is the so called *stress-function*.

The resultant torque $T(\Omega)$, torsional rigidity, can be expressed as

$$T(\Omega) = \int_{\Omega} v_{\Omega} \, dx$$

Let Ω^* be any circle having the same area as Ω . Then ([Polya, 50][Makai, 66]) $T(\Omega) \leq T(\Omega^*)$

Introduction 00000	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets 0000	Geometric Estimates	End O
The Problem					

At the turn of of the 20th century, V. A. Steklov posed the following problem:

Steklov Eigenvalue Problem						
$\left\{\begin{array}{c} -\Delta u\\ \langle \nabla u, \nu_{\Omega} \rangle\end{array}\right.$	=	0, <i>o</i> u,	in Ω , on $\partial \Omega$.			

Due to the compact embedding $W^{1,2}(\Omega) \hookrightarrow L^q(\partial \Omega) \implies$ increasing sequence of eigenvalues $\{\sigma_n(\Omega; \delta)\}_{n \in \mathbb{N}}$.

Applications [N. Kuznetsov, T. Kulczycki, M. Kwásnicki, A. Nazarov, S. Poborchi, I. Polterovich, B. Siudeja, 2014]:

- In engineering or physics: sloshing problem, electric impedance tomography, stationary heat distribution with flux at the boundary dependent of temperature...
- In "pure" mathematics: spectral shape optimization, Dirichlet to Neumann operator...

Among all simply connected plane domains the disc maximizes σ_2 [R. Weinstock 1954], this is:

 $\sigma_2(\Omega) \leq \sigma_2(\Omega^*)$

Introduction 00000	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets 0000	Geometric Estimates	End O
The Problem					

At the turn of of the 20th century, V. A. Steklov posed the following problem:

Steklov Eigenvalue Problem

 $\left\{ \begin{array}{rcl} -\Delta u &=& 0, & \mbox{in }\Omega, \\ \langle \nabla u, \nu_\Omega \rangle &=& \sigma \, u, & \mbox{on }\partial\Omega. \end{array} \right.$

Due to the compact embedding $W^{1,2}(\Omega) \hookrightarrow L^q(\partial\Omega) \implies$ increasing sequence of eigenvalues $\{\sigma_n(\Omega; \delta)\}_{n \in \mathbb{N}}$.

Applications [N. Kuznetsov, T. Kulczycki, M. Kwásnicki, A. Nazarov, S. Poborchi, I. Polterovich, B. Siudeja, 2014]:

- In engineering or physics: sloshing problem, electric impedance tomography, stationary heat distribution with flux at the boundary dependent of temperature...
- In "pure" mathematics: spectral shape optimization, Dirichlet to Neumann operator...

Among all simply connected plane domains the disc maximizes σ_2 [R. Weinstock 1954], this is:

 $\sigma_2(\Omega) \leq \sigma_2(\Omega^*)$

Introduction 00000	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets 0000	Geometric Estimates	End O
The Problem					

At the turn of of the 20th century, V. A. Steklov posed the following problem:

Steklov Eigenvalue Problem

Due to the compact embedding $W^{1,2}(\Omega) \hookrightarrow L^q(\partial\Omega) \implies$ increasing sequence of eigenvalues $\{\sigma_n(\Omega; \delta)\}_{n \in \mathbb{N}}$.

Applications [N. Kuznetsov, T. Kulczycki, M. Kwásnicki, A. Nazarov, S. Poborchi, I. Polterovich, B. Siudeja, 2014]:

- In engineering or physics: sloshing problem, electric impedance tomography, stationary heat distribution with flux at the boundary dependent of temperature...
- In "pure" mathematics: spectral shape optimization, Dirichlet to Neumann operator...

Among all simply connected plane domains the disc maximizes σ_2 [R. Weinstock 1954], this is:

 $\sigma_2(\Omega) \leq \sigma_2(\Omega^*)$

Introduction 00000	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets 0000	Geometric Estimates	End O
The Problem					

At the turn of of the 20th century, V. A. Steklov posed the following problem:

Steklov Eigenvalue Problem

$-\Delta u$	=	0,	in Ω ,
$\langle \nabla u, \nu_{\Omega} \rangle$	=	σu ,	on $\partial \Omega$.

Due to the compact embedding $W^{1,2}(\Omega) \hookrightarrow L^q(\partial\Omega) \implies$ increasing sequence of eigenvalues $\{\sigma_n(\Omega; \delta)\}_{n \in \mathbb{N}}$.

Applications [N. Kuznetsov, T. Kulczycki, M. Kwásnicki, A. Nazarov, S. Poborchi, I. Polterovich, B. Siudeja, 2014]:

- In engineering or physics: sloshing problem, electric impedance tomography, stationary heat distribution with flux at the boundary dependent of temperature...
- In "pure" mathematics: spectral shape optimization, Dirichlet to Neumann operator...

Among all simply connected plane domains the disc maximizes σ_2 [R. Weinstock 1954], this is:

 $\sigma_2(\Omega) \le \sigma_2(\Omega^*)$

Introduction 0000●	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End O
The Problem					

Motivation: Limit of a Stationary Reaction-Diffusion Problem

Let $\Omega \subset \mathbb{R}^N$ with C^2 boundary $\partial \Omega$. We define the strip

$$w_{\varepsilon} = \{x - \alpha \nu_{\Omega}(x), x \in \partial \Omega, \alpha \in [0, \varepsilon)\}$$

and we call χ_{ε} its characteristic function. Then, present the following problem:

$$\begin{cases} -\nabla \cdot (a(x)\nabla u^{\varepsilon}(x)) + \lambda u^{\varepsilon}(x) + c(x)u^{\varepsilon} = \frac{1}{\varepsilon}\chi_{\varepsilon}f_{\varepsilon} & \text{in }\Omega, \\ a(x)\langle \nabla u^{\varepsilon}, \nu_{\Omega} \rangle + b(x)u^{\varepsilon} = 0 & \text{on }\partial\Omega. \end{cases}$$
(1)

Theorem [J. M. Arrieta, A. Jiménez-Casas, A. Rodríguez-Bernal, 2008]

$$a=1$$
 $b=c=0$ $\lambda=\delta^2$ and $f_{\varepsilon}=1$.

Then, by taking the limit as $\varepsilon \to 0$ we get that the unique solution u_{ε} of (1) converges to the solution of

$$\begin{cases} -\Delta u + \delta^2 u = 0, & \text{in } \Omega, \\ \langle \nabla u, \nu_{\Omega} \rangle = 1, & \text{on } \partial \Omega. \end{cases}$$

Introduction 0000●	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End O
The Problem					

Motivation: Limit of a Stationary Reaction-Diffusion Problem

Let $\Omega \subset \mathbb{R}^N$ with C^2 boundary $\partial \Omega$. We define the strip

$$w_{\varepsilon} = \{x - \alpha \nu_{\Omega}(x), x \in \partial \Omega, \alpha \in [0, \varepsilon)\}$$

and we call χ_{ε} its characteristic function. Then, present the following problem:

$$\begin{cases} -\nabla \cdot (a(x)\nabla u^{\varepsilon}(x)) + \lambda u^{\varepsilon}(x) + c(x)u^{\varepsilon} = \frac{1}{\varepsilon}\chi_{\varepsilon}f_{\varepsilon} & \text{in }\Omega, \\ a(x)\langle \nabla u^{\varepsilon}, \nu_{\Omega} \rangle + b(x)u^{\varepsilon} = 0 & \text{on }\partial\Omega. \end{cases}$$
(1)

Theorem [J. M. Arrieta, A. Jiménez-Casas, A. Rodríguez-Bernal, 2008]

$$a=1$$
 $b=c=0$ $\lambda=\delta^2$ and $f_{\varepsilon}=1$.

Then, by taking the limit as $\varepsilon \to 0$ we get that the unique solution u_{ε} of (1) converges to the solution of

$$\begin{cases} -\Delta u + \delta^2 u = 0, & \text{in } \Omega, \\ \langle \nabla u, \nu_{\Omega} \rangle = 1, & \text{on } \partial \Omega. \end{cases}$$

Introduction 0000●	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End O
The Problem					

Motivation: Limit of a Stationary Reaction-Diffusion Problem

Let $\Omega \subset \mathbb{R}^N$ with C^2 boundary $\partial \Omega$. We define the strip

$$w_{\varepsilon} = \{x - \alpha \nu_{\Omega}(x), x \in \partial \Omega, \alpha \in [0, \varepsilon)\}$$

and we call χ_{ε} its characteristic function. Then, present the following problem:

$$\begin{cases} -\nabla \cdot (a(x)\nabla u^{\varepsilon}(x)) + \lambda u^{\varepsilon}(x) + c(x)u^{\varepsilon} = \frac{1}{\varepsilon}\chi_{\varepsilon}f_{\varepsilon} & \text{in }\Omega, \\ a(x)\langle \nabla u^{\varepsilon}, \nu_{\Omega} \rangle + b(x)u^{\varepsilon} = 0 & \text{on }\partial\Omega. \end{cases}$$
(1)

Theorem [J. M. Arrieta, A. Jiménez-Casas, A. Rodríguez-Bernal, 2008]

Set

$$a=1$$
 $b=c=0$ $\lambda=\delta^2$ and $f_{\varepsilon}=1$.

Then, by taking the limit as $\varepsilon \to 0$ we get that the unique solution u_{ε} of (1) converges to the solution of

$$\begin{cases} -\Delta u + \delta^2 u = 0, & \text{in } \Omega, \\ \langle \nabla u, \nu_{\Omega} \rangle = 1, & \text{on } \partial \Omega. \end{cases}$$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
•0000			

Boundary Torsional Rigidity

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
00000			

First properties

Scaling laws:

$$T\left(t\,\Omega;\,\frac{\delta}{t}\right) = t^N T(\Omega;\,\delta).$$

Relation to Sobolev constant:

$$W^{1,2}(\Omega) \hookrightarrow L^q(\partial\Omega),$$

$$1 \le q \le 2^{\#}$$
, compact when $q \ne 2^{\#}$.

$$2^{\#} = \begin{cases} \frac{2N-2}{N-2}, & \text{if } N \ge 3, \\ \text{finite}, & \text{if } N = 2, \end{cases}$$

We set

$$\eta_q(\Omega) = \inf_{\varphi \in W^{1,2}(\Omega)} \left\{ \|\varphi\|^2_{W^{1,2}(\Omega)} \, : \, \|\varphi\|_{L^q(\partial\Omega)} = 1 \right\} > 0$$

which is the sharp constant for the embedding.

Lemma

The supremum in the torsion functional is attained and

$$\frac{1}{\delta^2} \frac{(\mathcal{H}^{N-1}(\partial\Omega))^2}{|\Omega|} \le T(\Omega; \delta) \le \frac{1}{\min\{1, \delta^2\}} \frac{1}{\eta_1(\Omega)}$$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
00000			

First properties

Scaling laws:

Relation to Sobolev constant:

$$W^{1,2}(\Omega) \hookrightarrow L^q(\partial\Omega),$$

$$1 \le q \le 2^{\#}$$
, compact when $q \ne 2^{\#}$.

$$2^{\#} = \begin{cases} \frac{2N-2}{N-2}, & \text{if } N \ge 3, \\ \text{finite,} & \text{if } N = 2, \end{cases}$$

We set

$$\eta_q(\Omega) = \inf_{\varphi \in W^{1,2}(\Omega)} \left\{ \|\varphi\|_{W^{1,2}(\Omega)}^2 : \|\varphi\|_{L^q(\partial\Omega)} = 1 \right\} > 0$$

which is the sharp constant for the embedding.

Lemma

The supremum in the torsion functional is attained and

$$\frac{1}{\delta^2} \frac{(\mathcal{H}^{N-1}(\partial\Omega))^2}{|\Omega|} \le T(\Omega; \delta) \le \frac{1}{\min\{1, \delta^2\}} \frac{1}{\eta_1(\Omega)}$$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
00000			

First properties

Scaling laws:

Relation to Sobolev constant:

$$W^{1,2}(\Omega) \hookrightarrow L^q(\partial\Omega),$$

$$1 \le q \le 2^{\#}$$
, compact when $q \ne 2^{\#}$.

$$2^{\#} = \begin{cases} \frac{2N-2}{N-2}, & \text{if } N \ge 3, \\ \text{finite,} & \text{if } N = 2, \end{cases}$$

We set

$$\eta_q(\Omega) = \inf_{\varphi \in W^{1,2}(\Omega)} \left\{ \|\varphi\|_{W^{1,2}(\Omega)}^2 : \|\varphi\|_{L^q(\partial\Omega)} = 1 \right\} > 0.$$

which is the sharp constant for the embedding.

Lemma

The supremum in the torsion functional is attained and

$$\frac{1}{\delta^2} \frac{(\mathcal{H}^{N-1}(\partial \Omega))^2}{|\Omega|} \le T(\Omega; \delta) \le \frac{1}{\min\{1, \delta^2\}} \frac{1}{\eta_1(\Omega)}$$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
00000			

Proposition: Unconstrained concave problem

We reformulate the functional characterization of $T(\Omega, \delta)$ as

$$T(\Omega;\delta) = \sup_{\varphi \in W^{1,2}(\Omega)} \left\{ 2 \int_{\partial \Omega} \varphi \, d\mathcal{H}^{N-1} - \int_{\Omega} \left| \nabla \varphi \right|^2 dx - \delta^2 \int_{\Omega} \varphi^2 \, dx \right\}.$$

The supremum above is uniquely attained by a **non-negative** function $u_{\Omega,\delta} \in W^{1,2}(\Omega)$, which is the weak solution of the Neumann boundary value problem

$$\left\{ \begin{array}{rrr} -\Delta u + \delta^2 \, u &=& 0, \quad \mbox{in } \Omega, \\ \langle \nabla u, \nu_\Omega \rangle &=& 1, \quad \mbox{on } \partial \Omega. \end{array} \right.$$

This is, it satisfies the following Weak Boundary Torsion Problem:

$$\int_{\Omega} \langle \nabla u_{\Omega,\delta}, \nabla \varphi \rangle \, dx + \delta^2 \, \int_{\Omega} u_{\Omega,\delta} \, \varphi \, dx = \int_{\partial \Omega} \varphi \, d\mathcal{H}^{N-1}, \quad \text{for } \forall \varphi \in W^{1,2}(\Omega).$$

Finally, we also have

$$T(\Omega;\delta) = \int_{\partial\Omega} u_{\Omega,\delta} \, d\mathcal{H}^{N-1}.$$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
00000			

Proposition: Unconstrained concave problem

We reformulate the functional characterization of $T(\Omega, \delta)$ as

$$T(\Omega;\delta) = \sup_{\varphi \in W^{1,2}(\Omega)} \left\{ 2 \int_{\partial \Omega} \varphi \, d\mathcal{H}^{N-1} - \int_{\Omega} |\nabla \varphi|^2 \, dx - \delta^2 \int_{\Omega} \varphi^2 \, dx \right\}.$$

The supremum above is uniquely attained by a **non-negative** function $u_{\Omega,\delta} \in W^{1,2}(\Omega)$, which is the weak solution of the Neumann boundary value problem

$$\left\{ \begin{array}{rrr} -\Delta u+\delta^2\,u&=&0,\quad \mbox{in }\Omega,\\ \langle \nabla u,\nu_\Omega\rangle &=&1,\quad \mbox{on }\partial\Omega. \end{array} \right.$$

This is, it satisfies the following Weak Boundary Torsion Problem:

$$\int_{\Omega} \langle \nabla u_{\Omega,\delta}, \nabla \varphi \rangle \, dx + \delta^2 \, \int_{\Omega} u_{\Omega,\delta} \, \varphi \, dx = \int_{\partial \Omega} \varphi \, d\mathcal{H}^{N-1}, \quad \text{for } \forall \varphi \in W^{1,2}(\Omega).$$

Finally, we also have

$$T(\Omega;\delta) = \int_{\partial\Omega} u_{\Omega,\delta} \, d\mathcal{H}^{N-1}.$$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
00000			

Proposition: Unconstrained concave problem

We reformulate the functional characterization of $T(\Omega, \delta)$ as

$$T(\Omega;\delta) = \sup_{\varphi \in W^{1,2}(\Omega)} \left\{ 2 \int_{\partial \Omega} \varphi \, d\mathcal{H}^{N-1} - \int_{\Omega} |\nabla \varphi|^2 \, dx - \delta^2 \int_{\Omega} \varphi^2 \, dx \right\}.$$

The supremum above is uniquely attained by a **non-negative** function $u_{\Omega,\delta} \in W^{1,2}(\Omega)$, which is the weak solution of the Neumann boundary value problem

$$\left\{ \begin{array}{rrr} -\Delta u + \delta^2 \, u &=& 0, \quad \mbox{in } \Omega, \\ \langle \nabla u, \nu_\Omega \rangle &=& 1, \quad \mbox{on } \partial \Omega. \end{array} \right.$$

This is, it satisfies the following Weak Boundary Torsion Problem:

$$\int_{\Omega} \langle \nabla u_{\Omega,\delta}, \nabla \varphi \rangle \, dx + \delta^2 \, \int_{\Omega} u_{\Omega,\delta} \, \varphi \, dx = \int_{\partial \Omega} \varphi \, d\mathcal{H}^{N-1}, \quad \text{for } \forall \varphi \in W^{1,2}(\Omega).$$

Finally, we also have

$$T(\Omega;\delta) = \int_{\partial\Omega} u_{\Omega,\delta} \, d\mathcal{H}^{N-1}.$$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
00000			

Constrained convex problem

Dual formulation [L. Brasco, 2021]

We set

$$\mathcal{A}^{+}(\Omega) = \left\{ (\phi, g) \in L^{2}(\Omega; \mathbb{R}^{N}) \times L^{2}(\Omega) : \begin{array}{c} -\operatorname{div} \phi + \delta^{2} g \geq 0, & \text{in } \Omega \\ \langle \phi, \nu_{\Omega} \rangle \geq 1, & \text{on } \partial \Omega \end{array} \right\},$$

whith the conditions intended in weak sense. Then, we have

$$T(\Omega;\delta) = \min_{(\phi,g)\in\mathcal{A}^+(\Omega)} \left\{ \int_{\Omega} |\phi|^2 \, dx + \delta^2 \int_{\Omega} g^2 \, dx \right\},\tag{2}$$

and the minimum is uniquely attained by the pair $(\nabla u_{\Omega,\delta}, u_{\Omega,\delta})$.

Proof. For every non-negative $\varphi \in W^{1,2}(\Omega)$ and every $(\phi, g) \in \mathcal{A}^+(\Omega)$, we get that

$$2\int_{\partial\Omega}\varphi\,d\mathcal{H}^{N-1}-\left(\int_{\Omega}|\nabla\varphi|^2\,dx+\delta^2\,\int_{\Omega}\varphi^2\,dx\right)\leq\int_{\Omega}|\phi|^2\,dx+\delta^2\,\int_{\Omega}g^2\,dx,$$

by properties of $\mathcal{A}^+(\Omega)$ and Young's inequality. Now, the constraint $\varphi \ge 0$ can be dropped. The rest follows from arbitrariness of φ and (ϕ, g) .

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
00000			

Constrained convex problem

Dual formulation [L. Brasco, 2021]

We set

$$\mathcal{A}^{+}(\Omega) = \left\{ (\phi, g) \in L^{2}(\Omega; \mathbb{R}^{N}) \times L^{2}(\Omega) : \begin{array}{c} -\operatorname{div} \phi + \delta^{2} g \geq 0, & \text{in } \Omega \\ \langle \phi, \nu_{\Omega} \rangle \geq 1, & \text{on } \partial \Omega \end{array} \right\},$$

whith the conditions intended in weak sense. Then, we have

$$T(\Omega;\delta) = \min_{(\phi,g)\in\mathcal{A}^+(\Omega)} \left\{ \int_{\Omega} |\phi|^2 \, dx + \delta^2 \int_{\Omega} g^2 \, dx \right\},\tag{2}$$

and the minimum is uniquely attained by the pair $(\nabla u_{\Omega,\delta}, u_{\Omega,\delta})$.

Proof. For every non-negative $\varphi \in W^{1,2}(\Omega)$ and every $(\phi, g) \in \mathcal{A}^+(\Omega)$, we get that

$$2\int_{\partial\Omega}\varphi\,d\mathcal{H}^{N-1}-\left(\int_{\Omega}|\nabla\varphi|^2\,dx+\delta^2\,\int_{\Omega}\varphi^2\,dx\right)\leq\int_{\Omega}|\phi|^2\,dx+\delta^2\,\int_{\Omega}g^2\,dx,$$

by properties of $\mathcal{A}^+(\Omega)$ and Young's inequality. Now, the constraint $\varphi \ge 0$ can be dropped. The rest follows from arbitrariness of φ and (ϕ, g) .

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
00000			

Recall:

$$\sigma_{1}(\Omega;\delta) = \min_{\varphi \in W^{1,2}(\Omega)} \frac{\int_{\Omega} |\nabla \varphi|^{2} dx + \delta^{2} \int_{\Omega} \varphi^{2} dx}{\int_{\partial \Omega} u^{2} \mathcal{H}^{N-1}}$$

$$\left\{ \begin{array}{rcl} -\Delta u + \delta^2 u &=& 0, & \mbox{ in } \Omega, \\ \langle \nabla u, \nu_\Omega \rangle &=& \sigma \, u, & \mbox{ on } \partial \Omega. \end{array} \right.$$

Due to the compact embedding $W^{1,2}(\Omega) \hookrightarrow L^q(\partial\Omega) \implies$ increasing sequence of eigenvalues $\{\sigma_n(\Omega; \delta)\}_{n \in \mathbb{N}}$.

Notice that by choosing φ to be the characteristic function of Ω , we obtain

$$\sigma_1(\Omega; \delta) \le \delta^2 \frac{|\Omega|}{\mathcal{H}^{N-1}(\partial \Omega)}$$
 and thus $\lim_{\delta \to 0^+} \sigma_1(\Omega; \delta) = 0.$

Remark: Pòlya type inequality

Applying Hölder's inequality on the boundary integral we get

$$\frac{\sigma_1(\Omega;\delta) T(\Omega;\delta)}{\mathcal{H}^{N-1}(\partial\Omega)} \le 1$$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
00000			

Recall:

$$\sigma_{1}(\Omega;\delta) = \min_{\varphi \in W^{1,2}(\Omega)} \frac{\int_{\Omega} |\nabla \varphi|^{2} dx + \delta^{2} \int_{\Omega} \varphi^{2} dx}{\int_{\partial \Omega} u^{2} \mathcal{H}^{N-1}}$$

$$\left\{ \begin{array}{rcl} -\Delta u + \delta^2 u &=& 0, & \text{ in } \Omega, \\ \langle \nabla u, \nu_\Omega \rangle &=& \sigma \, u, & \text{ on } \partial \Omega. \end{array} \right.$$

Due to the compact embedding $W^{1,2}(\Omega) \hookrightarrow L^q(\partial\Omega) \implies$ increasing sequence of eigenvalues $\{\sigma_n(\Omega; \delta)\}_{n \in \mathbb{N}}$.

Notice that by choosing φ to be the characteristic function of Ω , we obtain

$$\sigma_1(\Omega; \delta) \le \delta^2 \frac{|\Omega|}{\mathcal{H}^{N-1}(\partial\Omega)}$$
 and thus $\lim_{\delta \to 0^+} \sigma_1(\Omega; \delta) = 0.$

Remark: Pòlya type inequality

Applying Hölder's inequality on the boundary integral we get

$$\frac{\sigma_1(\Omega;\delta) T(\Omega;\delta)}{\mathcal{H}^{N-1}(\partial\Omega)} \le 1$$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
00000			

Recall:

$$\sigma_{1}(\Omega; \delta) = \min_{\varphi \in W^{1,2}(\Omega)} \frac{\int_{\Omega} |\nabla \varphi|^{2} dx + \delta^{2} \int_{\Omega} \varphi^{2} dx}{\int_{\partial \Omega} u^{2} \mathcal{H}^{N-1}}$$

$$\left\{ \begin{array}{rcl} -\Delta u + \delta^2 u &=& 0, & \mbox{in } \Omega, \\ \langle \nabla u, \nu_\Omega \rangle &=& \sigma \, u, & \mbox{on } \partial \Omega. \end{array} \right.$$

Due to the compact embedding $W^{1,2}(\Omega) \hookrightarrow L^q(\partial\Omega) \implies$ increasing sequence of eigenvalues $\{\sigma_n(\Omega; \delta)\}_{n \in \mathbb{N}}$.

Notice that by choosing φ to be the characteristic function of Ω , we obtain

$$\sigma_1(\Omega; \delta) \leq \delta^2 \frac{|\Omega|}{\mathcal{H}^{N-1}(\partial \Omega)}$$
 and thus $\lim_{\delta \to 0^+} \sigma_1(\Omega; \delta) = 0.$

Remark: Pòlya type inequality

Applying Hölder's inequality on the boundary integral we get

 $\frac{\sigma_1(\Omega;\delta) T(\Omega;\delta)}{\mathcal{H}^{N-1}(\partial\Omega)} \le 1$

Introduction	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End
	00000				

Recall:

$$\sigma_{1}(\Omega; \delta) = \min_{\varphi \in W^{1,2}(\Omega)} \frac{\int_{\Omega} |\nabla \varphi|^{2} dx + \delta^{2} \int_{\Omega} \varphi^{2} dx}{\int_{\partial \Omega} u^{2} \mathcal{H}^{N-1}}$$

$$\left\{ \begin{array}{rcl} -\Delta u + \delta^2 u &=& 0, & \mbox{ in } \Omega, \\ \langle \nabla u, \nu_\Omega \rangle &=& \sigma \, u, & \mbox{ on } \partial \Omega. \end{array} \right.$$

Due to the compact embedding $W^{1,2}(\Omega) \hookrightarrow L^q(\partial\Omega) \implies$ increasing sequence of eigenvalues $\{\sigma_n(\Omega; \delta)\}_{n \in \mathbb{N}}$.

Notice that by choosing φ to be the characteristic function of Ω , we obtain

$$\sigma_1(\Omega; \delta) \leq \delta^2 \, rac{|\Omega|}{\mathcal{H}^{N-1}(\partial \Omega)} \qquad ext{and thus} \qquad \lim_{\delta o 0^+} \sigma_1(\Omega; \delta) = 0.$$

Remark: Pòlya type inequality

Applying Hölder's inequality on the boundary integral we get

$$\frac{\sigma_1(\Omega;\delta) T(\Omega;\delta)}{\mathcal{H}^{N-1}(\partial\Omega)} \le 1,$$

Introduction	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geom
00000	00000		0000	000

Some Properties of the Torsion Function

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
	0000		

Regularity of $u_{\Omega,\delta}$

(*i*) The $L^1(\Omega)$ norm of $u_{\Omega,\delta}$ is given by

$$\int_{\Omega} u_{\Omega,\delta} \, dx = \frac{\mathcal{H}^{N-1}(\partial\Omega)}{\delta^2}$$

(*ii*) Its trace is in $L^{\infty}(\partial \Omega)$, with the following estimate: for every $2 < q < 2^{\#}$,

$$\|u_{\Omega,\delta}\|_{L^{\infty}(\partial\Omega)} \le C_q \left(\frac{T(\Omega;\delta)^{\frac{q-2}{q}}}{\min\{1,\delta^2\}\eta_q(\Omega)}\right)^{\frac{q}{2(q-1)}}$$

where $C_q > 0$ is a constant only depending on q, which blows-up as $q \searrow 2$.

 $\|u_{\Omega,\delta}\|_{L^{\infty}(\Omega)} \leq \|u_{\Omega,\delta}\|_{L^{\infty}(\partial\Omega)}.$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
	0000		

Regularity of $u_{\Omega,\delta}$

(*i*) The $L^1(\Omega)$ norm of $u_{\Omega,\delta}$ is given by

$$\int_{\Omega} u_{\Omega,\delta} \, dx = \frac{\mathcal{H}^{N-1}(\partial\Omega)}{\delta^2}$$

(ii) Its trace is in $L^{\infty}(\partial \Omega)$, with the following estimate: for every $2 < q < 2^{\#}$,

$$\|u_{\Omega,\delta}\|_{L^{\infty}(\partial\Omega)} \leq C_q \left(\frac{T(\Omega;\delta)^{\frac{q-2}{q}}}{\min\{1,\delta^2\} \eta_q(\Omega)}\right)^{\frac{q}{2(q-1)}}$$

,

where $C_q > 0$ is a constant only depending on q, which blows-up as $q \searrow 2$.

(iii) Maximum principle. We have $u_{\Omega,\delta} \in L^{\infty}(\Omega)$ and it holds

 $\|u_{\Omega,\delta}\|_{L^{\infty}(\Omega)} \leq \|u_{\Omega,\delta}\|_{L^{\infty}(\partial\Omega)}.$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
	0000		

Regularity of $u_{\Omega,\delta}$

(*i*) The $L^1(\Omega)$ norm of $u_{\Omega,\delta}$ is given by

$$\int_{\Omega} u_{\Omega,\delta} \, dx = \frac{\mathcal{H}^{N-1}(\partial\Omega)}{\delta^2}$$

(ii) Its trace is in $L^{\infty}(\partial \Omega)$, with the following estimate: for every $2 < q < 2^{\#}$,

$$\|u_{\Omega,\delta}\|_{L^{\infty}(\partial\Omega)} \leq C_q \left(\frac{T(\Omega;\delta)^{\frac{q-2}{q}}}{\min\{1,\delta^2\} \eta_q(\Omega)}\right)^{\frac{q}{2(q-1)}}$$

,

where $C_q > 0$ is a constant only depending on q, which blows-up as $q \searrow 2$. (*iii*) *Maximum principle*. We have $u_{\Omega,\delta} \in L^{\infty}(\Omega)$ and it holds

$$|u_{\Omega,\delta}||_{L^{\infty}(\Omega)} \leq ||u_{\Omega,\delta}||_{L^{\infty}(\partial\Omega)}.$$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
	0000		

Regularity of $u_{\Omega,\delta}$

(*i*) The $L^1(\Omega)$ norm of $u_{\Omega,\delta}$ is given by

$$\int_{\Omega} u_{\Omega,\delta} \, dx = \frac{\mathcal{H}^{N-1}(\partial\Omega)}{\delta^2}$$

(ii) Its trace is in $L^{\infty}(\partial \Omega)$, with the following estimate: for every $2 < q < 2^{\#}$,

$$\|u_{\Omega,\delta}\|_{L^{\infty}(\partial\Omega)} \leq C_q \left(\frac{T(\Omega;\delta)^{\frac{q-2}{q}}}{\min\{1,\delta^2\} \eta_q(\Omega)}\right)^{\frac{q}{2(q-1)}}$$

,

where $C_q > 0$ is a constant only depending on q, which blows-up as $q \searrow 2$.

(iii) Maximum principle. We have $u_{\Omega,\delta} \in L^{\infty}(\Omega)$ and it holds

$$||u_{\Omega,\delta}||_{L^{\infty}(\Omega)} \leq ||u_{\Omega,\delta}||_{L^{\infty}(\partial\Omega)}.$$

Introduction 00000	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End O

(ii) By Moser's iteration [L. Braso, E. Parini, 2014]. Is enough to prove the estimate for $\delta = 1$, rest of cases follow by scaling. For simplicity we write $u = u_{\Omega,1}$ and fix M > 0 and $\beta \ge 1$, then we insert $\varphi = u_{M}^{\beta}$, where $u_{M} = \min\{u, M\}$, in the weak formulation as test function

$$\left\| u_M^{\frac{\beta+1}{2}} \right\|_{W^{1,2}(\Omega)}^2 \leq \left(\frac{(\beta+1)^2}{4\beta} + 1 \right) \int_{\partial\Omega} u_M^{\beta} d\mathcal{H}^{N-1}.$$

Recalling trace embedding for $2 < q < 2^{\#}$ we obtain the following reverse Holder inequality:

$$\eta_q(\Omega) \left(\int_{\partial\Omega} \left(u_M^{\frac{\beta+1}{2}} \right)^q d\mathcal{H}^{N-1} \right)^{\frac{1}{q}} \leq \left(\frac{(\beta+1)^2}{4\beta} + 1 \right) \int_{\partial\Omega} u_M^{\beta} d\mathcal{H}^{N-1}.$$

Then, we choose $\beta_0 = 1$ and $\beta_{i+1} = \frac{q}{2} (\beta_i + 1)$, and setting $Y_i = \|u_M\|_L \beta_i (\partial \Omega)$ we get

$$Y_{i+1} \leq \left(\frac{1}{\eta_q(\Omega)} \ (\beta_i+1)\right)^{\frac{q}{2} \frac{1}{\beta_{i+1}}} Y_i^{\frac{q}{2} \frac{\beta_i}{\beta_{i+1}}}, \quad \text{for every } i \in \mathbb{N}.$$

Introduction 00000	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End O

(*ii*) By Moser's iteration [L. Braso, E. Parini, 2014]. Is enough to prove the estimate for $\delta = 1$, rest of cases follow by scaling. For simplicity we write $u = u_{\Omega,1}$ and fix M > 0 and $\beta \ge 1$, then we insert $\varphi = u_M^\beta$, where $u_M = \min\{u, M\}$, in the weak formulation as test function

$$\left\| u_M^{\frac{\beta+1}{2}} \right\|_{W^{1,2}(\Omega)}^2 \leq \left(\frac{(\beta+1)^2}{4\beta} + 1 \right) \int_{\partial\Omega} u_M^{\beta} d\mathcal{H}^{N-1}.$$

Recalling trace embedding for $2 < q < 2^{\#}$ we obtain the following reverse Holder inequality:

$$\eta_q(\Omega) \left(\int_{\partial\Omega} \left(u_M^{\frac{\beta+1}{2}} \right)^q d\mathcal{H}^{N-1} \right)^{\frac{1}{q}} \leq \left(\frac{(\beta+1)^2}{4\beta} + 1 \right) \int_{\partial\Omega} u_M^{\beta} d\mathcal{H}^{N-1}.$$

Then, we choose $\beta_0 = 1$ and $\beta_{i+1} = \frac{q}{2} (\beta_i + 1)$, and setting $Y_i = \|u_M\|_L \beta_i (\partial \Omega)$ we get

$$Y_{i+1} \leq \left(\frac{1}{\eta_q(\Omega)} \ (\beta_i+1)\right)^{\frac{q}{2} \frac{1}{\beta_{i+1}}} Y_i^{\frac{q}{2} \frac{\beta_i}{\beta_{i+1}}}, \quad \text{for every } i \in \mathbb{N}.$$

Introduction 00000	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End O

(*ii*) By Moser's iteration [L. Braso, E. Parini, 2014]. Is enough to prove the estimate for $\delta = 1$, rest of cases follow by scaling. For simplicity we write $u = u_{\Omega,1}$ and fix M > 0 and $\beta \ge 1$, then we insert $\varphi = u_M^\beta$, where $u_M = \min\{u, M\}$, in the weak formulation as test function

$$\left\| u_M^{\frac{\beta+1}{2}} \right\|_{W^{1,2}(\Omega)}^2 \leq \left(\frac{(\beta+1)^2}{4\beta} + 1 \right) \int_{\partial\Omega} u_M^{\beta} d\mathcal{H}^{N-1}.$$

Recalling trace embedding for $2 < q < 2^{\#}$ we obtain the following reverse Holder inequality:

$$\eta_q(\Omega) \left(\int_{\partial\Omega} \left(u_M^{\frac{\beta+1}{2}} \right)^q d\mathcal{H}^{N-1} \right)^{\frac{2}{q}} \leq \left(\frac{(\beta+1)^2}{4\beta} + 1 \right) \int_{\partial\Omega} u_M^\beta d\mathcal{H}^{N-1}$$

Then, we choose $\beta_0 = 1$ and $\beta_{i+1} = \frac{q}{2} (\beta_i + 1)$, and setting $Y_i = \|u_M\|_{L^{\beta_i}(\partial\Omega)}$ we get

$$Y_{i+1} \leq \left(\frac{1}{\eta_q(\Omega)} \ (\beta_i+1)\right)^{\frac{q}{2} \frac{1}{\beta_{i+1}}} Y_i^{\frac{q}{2} \frac{\beta_i}{\beta_{i+1}}}, \quad \text{for every } i \in \mathbb{N}.$$

Introduction 00000	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End O

(*ii*) By Moser's iteration [L. Braso, E. Parini, 2014]. Is enough to prove the estimate for $\delta = 1$, rest of cases follow by scaling. For simplicity we write $u = u_{\Omega,1}$ and fix M > 0 and $\beta \ge 1$, then we insert $\varphi = u_M^\beta$, where $u_M = \min\{u, M\}$, in the weak formulation as test function

$$\left\| u_M^{\frac{\beta+1}{2}} \right\|_{W^{1,2}(\Omega)}^2 \leq \left(\frac{(\beta+1)^2}{4\beta} + 1 \right) \int_{\partial\Omega} u_M^{\beta} d\mathcal{H}^{N-1}.$$

Recalling trace embedding for $2 < q < 2^{\#}$ we obtain the following reverse Holder inequality:

$$\eta_q(\Omega) \left(\int_{\partial\Omega} \left(u_M^{\frac{\beta+1}{2}} \right)^q d\mathcal{H}^{N-1} \right)^{\frac{2}{q}} \leq \left(\frac{(\beta+1)^2}{4\beta} + 1 \right) \int_{\partial\Omega} u_M^\beta d\mathcal{H}^{N-1}$$

Then, we choose $\beta_0 = 1$ and $\beta_{i+1} = \frac{q}{2} (\beta_i + 1)$, and setting $Y_i = \|u_M\|_{L^{\beta_i}(\partial \Omega)}$ we get

$$Y_{i+1} \leq \left(\frac{1}{\eta_q(\Omega)} \ (\beta_i+1)\right)^{\frac{q}{2} \frac{1}{\beta_{i+1}}} Y_i^{\frac{q}{2} \frac{\beta_i}{\beta_{i+1}}}, \quad \text{for every } i \in \mathbb{N}.$$
Introduction 00000	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End O

Proof.

We start with i = 0 and iterate it *n* times. Then

$$Y_{n} \leq \left(\frac{1}{\eta_{q}(\Omega)}\right)^{\frac{1}{\beta_{n}}} \sum_{i=1}^{n} {\binom{q}{2}}^{i} \left[\prod_{i=0}^{n-1} (\beta_{i}+1)^{\binom{q}{2}}\right]^{-i} Y_{0}^{\binom{q}{2}^{n}} X_{0}^{\binom{q}{2}^{n}}$$

We finish passing to the limit as $n \to \infty$ and then as $M \to \infty$.

(*iii*) Let us set $L = ||u_{\Omega,\delta}||_{L^{\infty}(\partial\Omega)}$ and introduce $\varphi = (u_{\Omega,\delta} - L)_+ \in W_0^{1,2}(\Omega)$ as test function in the weak formulation

$$\int_{\Omega} \left| \nabla (u_{\Omega,\delta} - L)_+ \right|^2 dx + \delta^2 \int_{\Omega} u_{\Omega,\delta} (u_{\Omega,\delta} - L)_+ dx = 0.$$

Since both terms are non-negative:

$$\nabla (u_{\Omega,\delta} - L)_+ = 0,$$
 and $u_{\Omega,\delta} (u_{\Omega,\delta} - L)_+ = 0,$ a.e. in Ω .

Introduction 00000	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End O

We start with i = 0 and iterate it *n* times. Then

Proof.

$$Y_{n} \leq \left(\frac{1}{\eta_{q}(\Omega)}\right)^{\frac{1}{\beta_{n}}\sum_{i=1}^{n} \left(\frac{q}{2}\right)^{i}} \left[\prod_{i=0}^{n-1} (\beta_{i}+1)^{\left(\frac{q}{2}\right)^{n-i}}\right]^{\frac{1}{\beta_{n}}} Y_{0}^{\left(\frac{q}{2}\right)^{n}\frac{\beta_{0}}{\beta_{n}}}$$

We finish passing to the limit as $n \to \infty$ and then as $M \to \infty$.

(*iii*) Let us set $L = ||u_{\Omega,\delta}||_{L^{\infty}(\partial\Omega)}$ and introduce $\varphi = (u_{\Omega,\delta} - L)_+ \in W_0^{1,2}(\Omega)$ as test function in the weak formulation

$$\int_{\Omega} \left| \nabla (u_{\Omega,\delta} - L)_+ \right|^2 dx + \delta^2 \int_{\Omega} u_{\Omega,\delta} (u_{\Omega,\delta} - L)_+ dx = 0.$$

Since both terms are non-negative:

 $\nabla (u_{\Omega,\delta} - L)_+ = 0,$ and $u_{\Omega,\delta} (u_{\Omega,\delta} - L)_+ = 0,$ a.e. in Ω .

Introduction 00000	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End O

Proof.

We start with i = 0 and iterate it *n* times. Then

$$Y_{n} \leq \left(\frac{1}{\eta_{q}(\Omega)}\right)^{\frac{1}{\beta_{n}}} \sum_{i=1}^{n} {\binom{q}{2}}^{i} \left[\prod_{i=0}^{n-1} (\beta_{i}+1)^{\binom{q}{2}^{n-i}}\right]^{\frac{1}{\beta_{n}}} Y_{0}^{\binom{q}{2}^{n} \frac{\beta_{0}}{\beta_{n}}}$$

We finish passing to the limit as $n \to \infty$ and then as $M \to \infty$.

(*iii*) Let us set $L = ||u_{\Omega,\delta}||_{L^{\infty}(\partial\Omega)}$ and introduce $\varphi = (u_{\Omega,\delta} - L)_+ \in W_0^{1,2}(\Omega)$ as test function in the weak formulation

$$\int_{\Omega} |\nabla (u_{\Omega,\delta} - L)_+|^2 dx + \delta^2 \int_{\Omega} u_{\Omega,\delta} (u_{\Omega,\delta} - L)_+ dx = 0.$$

Since both terms are non-negative:

$$abla(u_{\Omega,\delta}-L)_+=0,$$
 and $u_{\Omega,\delta}(u_{\Omega,\delta}-L)_+=0,$ a.e. in Ω .

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
	00000		

A few more properties

Monotonicity

For every $0 < \delta_0 < \delta_1$, we have that: $u_{\Omega,\delta_0} > u_{\Omega,\delta_1}$,

in Ω

Asymptotics for $\delta \rightarrow 0$

Under the previous assumptions we have

$$\lim_{\delta \to 0^+} \|\nabla(\delta^2 u_{\Omega,\delta})\|_{L^2(\Omega)} = 0 \quad \text{and} \quad \lim_{\delta \to 0^+} \left\|\delta^2 u_{\Omega,\delta} - \frac{\mathcal{H}^{**}(\partial \Omega)}{|\Omega|}\right\|_{L^m(\Omega)} = 0,$$

for every $2 \le m < +\infty$. Moreover,

$$\lim_{\delta \to 0^+} \delta^2 T(\Omega; \delta) = \frac{(\mathcal{H}^{N-1}(\partial \Omega))^2}{|\Omega|},$$

Remark. With previous estimates we can prove that the "naive" lower bound given before,

$$\frac{1}{\delta^2} \frac{(\mathcal{H}^{N-1}(\partial\Omega))^2}{|\Omega|} \le T(\Omega; \delta),$$

is actually sharp, recalling the scaling law $T(t\Omega, \frac{\delta}{t}) = t^N T(\Omega, \delta)$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
	00000		

A few more properties

Monotonicity

For every $0 < \delta_0 < \delta_1$, we have that: $u_{\Omega,\delta_0} > u_{\Omega,\delta_1}$, in Ω

Asymptotics for $\delta \to 0$

Under the previous assumptions we have

$$\lim_{\delta \to 0^+} \|\nabla(\delta^2 u_{\Omega,\delta})\|_{L^2(\Omega)} = 0 \quad \text{and} \quad \lim_{\delta \to 0^+} \left\|\delta^2 u_{\Omega,\delta} - \frac{\mathcal{H}^{\nu-1}(\partial\Omega)}{|\Omega|}\right\|_{L^m(\Omega)} = 0,$$

for every $2 \le m < +\infty$. Moreover,

$$\lim_{\delta \to 0^+} \delta^2 T(\Omega; \delta) = \frac{(\mathcal{H}^{N-1}(\partial \Omega))^2}{|\Omega|}$$

Remark. With previous estimates we can prove that the "naive" lower bound given before,

$$\frac{1}{\delta^2} \frac{(\mathcal{H}^{N-1}(\partial \Omega))^2}{|\Omega|} \le T(\Omega; \delta),$$

is actually sharp, recalling the scaling law $T(t\Omega, \frac{\delta}{t}) = t^N T(\Omega, \delta)$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
	00000		

A few more properties

Monotonicity

For every $0 < \delta_0 < \delta_1$, we have that: $u_{\Omega,\delta_0} > u_{\Omega,\delta_1}$, in Ω

Asymptotics for $\delta \rightarrow 0$

Under the previous assumptions we have

$$\lim_{\delta \to 0^+} \|\nabla(\delta^2 u_{\Omega,\delta})\|_{L^2(\Omega)} = 0 \quad \text{and} \quad \lim_{\delta \to 0^+} \left\|\delta^2 u_{\Omega,\delta} - \frac{\mathcal{H}^{\nu-1}(\partial\Omega)}{|\Omega|}\right\|_{L^m(\Omega)} = 0,$$

for every $2 \le m < +\infty$. Moreover,

$$\lim_{\delta \to 0^+} \delta^2 T(\Omega; \delta) = \frac{(\mathcal{H}^{N-1}(\partial \Omega))^2}{|\Omega|}$$

Remark. With previous estimates we can prove that the "naive" lower bound given before,

$$\frac{1}{\delta^2} \frac{(\mathcal{H}^{N-1}(\partial\Omega))^2}{|\Omega|} \le T(\Omega; \delta),$$

is actually sharp, recalling the scaling law $T(t\Omega, \frac{\delta}{t}) = t^N T(\Omega, \delta)$

	oundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
			•000	

Exact Solutions in Some Special Sets

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
		0000	

Solution in the Ball

We indicate by I_{α} and K_{α} , the *modified Bessel functions with index* α of first and second kind, respectively, and by Γ the usual Gamma function. We recall that these functions have the following asymptotic behavior for *z* converging to 0:

$$I_{\alpha}(z) \sim \frac{1}{\Gamma(\alpha+1)} \left(\frac{z}{2}\right)^{\alpha}$$
 and $K_{\alpha}(z) \sim \begin{cases} -\log\left(\frac{z}{2}\right), & \text{for } \alpha = 0, \\ \\ \frac{\Gamma(\alpha)}{2} \left(\frac{2}{z}\right)^{\alpha}, & \text{otherwise,} \end{cases}$

Exact solution on the ball

Let $\delta > 0$ and let $B \subset \mathbb{R}^N$ be the ball of radius 1, centered at the origin. Then,

$$u_{B,\delta}(x) = \mathcal{U}_{\delta}(|x|)$$
 where $\mathcal{U}_{\delta}(\varrho) = \frac{\varrho^{1-N/2} I_{N/2-1}(\delta \, \varrho)}{\delta I_{N/2}(\delta)}$

and $u_{B,\delta}$ is a radially symmetric increasing function. Accordingly, we get

$$T(B;\delta) = \int_{\partial B} u_{B,\delta} \, d\mathcal{H}^{N-1} = \frac{N \, \omega_N \, I_{N/2-1}(\delta)}{\delta \, I_{N/2}(\delta)}.$$

Finally, the function $\rho \mapsto \mathcal{U}'_{\delta}(\rho)/\rho$ is monotone non-decreasing

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
		0000	

Solution in the Ball

We indicate by I_{α} and K_{α} , the *modified Bessel functions with index* α of first and second kind, respectively, and by Γ the usual Gamma function. We recall that these functions have the following asymptotic behavior for *z* converging to 0:

$$I_{\alpha}(z) \sim \frac{1}{\Gamma(\alpha+1)} \left(\frac{z}{2}\right)^{\alpha}$$
 and $K_{\alpha}(z) \sim \begin{cases} -\log\left(\frac{z}{2}\right), & \text{for } \alpha = 0, \\ \\ \frac{\Gamma(\alpha)}{2} \left(\frac{2}{z}\right)^{\alpha}, & \text{otherwise,} \end{cases}$

Exact solution on the ball

Let $\delta > 0$ and let $B \subset \mathbb{R}^N$ be the ball of radius 1, centered at the origin. Then,

$$u_{B,\delta}(x) = \mathcal{U}_{\delta}(|x|)$$
 where $\mathcal{U}_{\delta}(\varrho) = \frac{\varrho^{1-N/2} I_{N/2-1}(\delta \, \varrho)}{\delta I_{N/2}(\delta)}$

and $u_{B,\delta}$ is a radially symmetric increasing function. Accordingly, we get

$$T(B;\delta) = \int_{\partial B} u_{B,\delta} \, d\mathcal{H}^{N-1} = \frac{N \, \omega_N \, I_{N/2-1}(\delta)}{\delta \, I_{N/2}(\delta)}.$$

Finally, the function $\varrho \mapsto \mathcal{U}_{\delta}'(\varrho)/\varrho$ is monotone non-decreasing

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
		0000	

Other exact solutions

Spherical Shells. Let $\delta > 0$. For 0 < r < R, we consider the spherical shell

$$\Omega = \Big\{ x \in \mathbb{R}^N : r < |x| < R \Big\}.$$

Then $u_{\Omega,\delta}$ is a radially symmetric function. This is explicitly given by

$$u_{\Omega,\delta}(x) = \mathcal{V}_{r,R,\delta}(|x|), \quad \text{for } x \in \Omega,$$

where

$$\mathcal{V}_{r,R,\delta}(\varrho) = C_0 \, \varrho^{1-\frac{N}{2}} \, I_{N/2-1}(\delta \, \varrho) + D_0 \, \varrho^{1-\frac{N}{2}} \, K_{N/2-1}(\delta \, \varrho),$$

and the constants $C_0 = C_0(r, R, \delta) \neq 0$ and $D = D_0(r, R, \delta) \neq 0$ are explicit. Accordingly, we get

$$T(\Omega;\delta) = \frac{\left[r^{1-\frac{N}{2}} K_{N/2}(\delta r) + R^{1-\frac{N}{2}} K_{N/2}(\delta R)\right] \left[R^{1-\frac{N}{2}} I_{1-N/2}(\delta R) + r^{1-\frac{N}{2}} I_{1-N/2}(\delta r)\right]}{\delta r^{1-\frac{N}{2}} R^{1-\frac{N}{2}} \left[I_{N/2}(R) K_{N/2}(r) - I_{N/2}(r) K_{N/2}(R)\right]} + \frac{\left[r^{1-\frac{N}{2}} I_{N/2}(\delta r) + R^{1-\frac{N}{2}} I_{N/2}(\delta R)\right] \left[R^{1-\frac{N}{2}} K_{1-N/2}(\delta R) + r^{1-\frac{N}{2}} K_{1-N/2}(\delta r)\right]}{\delta r^{1-\frac{N}{2}} R^{1-\frac{N}{2}} \left[I_{N/2}(r) K_{N/2}(R) - I_{N/2}(R) K_{N/2}(r)\right]}$$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	
		0000	

Other exact solutions

Hyperrectangle. Let $\delta > 0$ and let $\ell_1, \ell_2, \ldots, \ell_N > 0$. If we set

$$\Omega = \prod_{i=1}^{N} (-\ell_i, \ell_i),$$

then we have

$$u_{\Omega,\delta}(x) = \sum_{i=1}^{N} \frac{\cosh(\delta x_i)}{\delta \sinh(\delta \ell_i)}, \quad \text{for every } x = (x_1, \dots, x_N) \in \Omega.$$
(3)

Its boundary torsional rigidity is given by

$$T(\Omega; \delta) = \sum_{k=1}^{N} \left[\frac{1}{\delta \tanh(\delta \ell_k)} \mathcal{H}^{N-1}(\Sigma_k) + \sum_{i \neq k} \frac{1}{\delta^2} \mathcal{H}^{N-2}(\Sigma_{k,i}) \right],$$

where

$$\Sigma_k = \left\{ x \in \overline{\Omega} \ : \ |x_k| = \ell_k
ight\} \qquad ext{and} \qquad \Sigma_{k,i} = \left\{ x \in \overline{\Omega} \ : \ |x_k| = \ell_k, \ |x_i| = \ell_i
ight\}.$$

Geometric Estimates

Lower bound in dim 2.

Lower bound in dim N (Convex sets).

Upper bound in dim N (Convex sets).

Introduction	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End
				000000000	

Let
$$\mathbb{D} = \{x \in \mathbb{R}^2 : |x| < 1\}$$
 and $\Omega \subsetneq \mathbb{R}^2$. Given a point $x_0 \in \Omega$,

Riemann Mapping Theorem states that there exists a unique (up to a rotation) holomorphic isomorphism

$$f_{x_0}: \mathbb{D} \to \Omega, \qquad \text{with } f_{x_0}(0) = x_0.$$

Furthermore, when $\partial \Omega$ is $C^{1,\alpha}$, we know that this is C^1 in $\overline{\mathbb{D}}$ and

 $f'_{x_0}(x) \neq 0$, for every $x \in \partial \mathbb{D}$. [S. E. Warschawski, 1961]

• We define the *boundary distortion radius* of Ω by

$$\dot{\mathcal{R}}_{\Omega} := \inf_{x_0 \in \Omega} \left(rac{1}{2 \, \pi} \, \int_{\partial \mathbb{D}} \left| f_{x_0}' \right|^2 d\mathcal{H}^1
ight)^{rac{1}{2}},$$

and the *inradius* : $\dot{r}_{\Omega} := \sup_{x_0 \in \Omega} |f'_{x_0}(0)|$.

$$|f_{x_0}'(0)| \le \left(\frac{1}{2 \pi \varrho} \int_{\{|x|=\varrho\}} |f_{x_0}'|^2 d\mathcal{H}^1\right)^{\frac{1}{2}} \le \left(\frac{1}{2 \pi} \int_{\partial \mathbb{D}} |f_{x_0}'|^2 d\mathcal{H}^1\right)^{\frac{1}{2}}.$$

Introduction	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End
				000000000	

Let
$$\mathbb{D} = \{x \in \mathbb{R}^2 : |x| < 1\}$$
 and $\Omega \subsetneq \mathbb{R}^2$. Given a point $x_0 \in \Omega$,

Riemann Mapping Theorem states that there exists a unique (up to a rotation) holomorphic isomorphism

$$f_{x_0}: \mathbb{D} \to \Omega$$
, with $f_{x_0}(0) = x_0$.

Furthermore, when $\partial\Omega$ is $C^{1,\alpha}$, we know that this is C^1 in $\overline{\mathbb{D}}$ and

 $f'_{x_0}(x) \neq 0$, for every $x \in \partial \mathbb{D}$. [S. E. Warschawski, 1961]

We define the *boundary distortion radius* of Ω by

$$\dot{\mathcal{R}}_{\Omega} := \inf_{x_0 \in \Omega} \left(\frac{1}{2 \pi} \int_{\partial \mathbb{D}} |f'_{x_0}|^2 d\mathcal{H}^1 \right)^{\frac{1}{2}}$$

and the *inradius* : $\dot{r}_{\Omega} := \sup_{x_0 \in \Omega} |f'_{x_0}(0)|$.

$$|f_{x_0}'(0)| \le \left(\frac{1}{2 \pi \varrho} \int_{\{|x|=\varrho\}} |f_{x_0}'|^2 d\mathcal{H}^1\right)^{\frac{1}{2}} \le \left(\frac{1}{2 \pi} \int_{\partial \mathbb{D}} |f_{x_0}'|^2 d\mathcal{H}^1\right)^{\frac{1}{2}}.$$

Introduction	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End
				000000000	

Let
$$\mathbb{D} = \{x \in \mathbb{R}^2 : |x| < 1\}$$
 and $\Omega \subsetneq \mathbb{R}^2$. Given a point $x_0 \in \Omega$,

Riemann Mapping Theorem states that there exists a unique (up to a rotation) holomorphic isomorphism

$$f_{x_0}: \mathbb{D} \to \Omega, \quad \text{with } f_{x_0}(0) = x_0.$$

Furthermore, when $\partial\Omega$ is $C^{1,\alpha}$, we know that this is C^1 in $\overline{\mathbb{D}}$ and

 $f'_{x_0}(x) \neq 0$, for every $x \in \partial \mathbb{D}$. [S. E. Warschawski, 1961]

We define the *boundary distortion radius* of Ω by

$$\dot{\mathcal{R}}_{\Omega} := \inf_{x_0 \in \Omega} \left(rac{1}{2 \, \pi} \, \int_{\partial \mathbb{D}} \left| f_{x_0}'
ight|^2 d\mathcal{H}^1
ight)^{rac{1}{2}},$$

and the *inradius* : $\dot{r}_{\Omega} := \sup_{x_0 \in \Omega} |f'_{x_0}(0)|$.

$$|f_{x_0}'(0)| \le \left(\frac{1}{2 \pi \varrho} \int_{\{|x|=\varrho\}} |f_{x_0}'|^2 d\mathcal{H}^1\right)^{\frac{1}{2}} \le \left(\frac{1}{2 \pi} \int_{\partial \mathbb{D}} |f_{x_0}'|^2 d\mathcal{H}^1\right)^{\frac{1}{2}}.$$

Introduction	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End
				000000000	

Let
$$\mathbb{D} = \{x \in \mathbb{R}^2 : |x| < 1\}$$
 and $\Omega \subsetneq \mathbb{R}^2$. Given a point $x_0 \in \Omega$,

Riemann Mapping Theorem states that there exists a unique (up to a rotation) holomorphic isomorphism

$$f_{x_0}: \mathbb{D} \to \Omega, \quad \text{with } f_{x_0}(0) = x_0.$$

Furthermore, when $\partial\Omega$ is $C^{1,\alpha}$, we know that this is C^1 in $\overline{\mathbb{D}}$ and

 $f'_{x_0}(x) \neq 0$, for every $x \in \partial \mathbb{D}$. [S. E. Warschawski, 1961]

We define the *boundary distortion radius* of Ω by

$$\dot{\mathcal{R}}_{\Omega} := \inf_{x_0 \in \Omega} \left(rac{1}{2 \, \pi} \, \int_{\partial \mathbb{D}} \left| f_{x_0}'
ight|^2 d\mathcal{H}^1
ight)^{rac{1}{2}},$$

and the *inradius* : $\dot{r}_{\Omega} := \sup_{x_0 \in \Omega} |f'_{x_0}(0)|$.

$$|f_{x_0}'(0)| \le \left(\frac{1}{2 \pi \varrho} \int_{\{|x|=\varrho\}} |f_{x_0}'|^2 d\mathcal{H}^1\right)^{\frac{1}{2}} \le \left(\frac{1}{2 \pi} \int_{\partial \mathbb{D}} |f_{x_0}'|^2 d\mathcal{H}^1\right)^{\frac{1}{2}}.$$

Introduction	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End
				000000000	

Let
$$\mathbb{D} = \{x \in \mathbb{R}^2 : |x| < 1\}$$
 and $\Omega \subsetneq \mathbb{R}^2$. Given a point $x_0 \in \Omega$,

Riemann Mapping Theorem states that there exists a unique (up to a rotation) holomorphic isomorphism

$$f_{x_0}: \mathbb{D} \to \Omega, \quad \text{with } f_{x_0}(0) = x_0.$$

Furthermore, when $\partial\Omega$ is $C^{1,\alpha}$, we know that this is C^1 in $\overline{\mathbb{D}}$ and

 $f'_{x_0}(x) \neq 0$, for every $x \in \partial \mathbb{D}$. [S. E. Warschawski, 1961]

We define the *boundary distortion radius* of Ω by

$$\dot{\mathcal{R}}_\Omega := \inf_{x_0\in\Omega} \left(rac{1}{2\,\pi}\,\int_{\partial\mathbb{D}} \left|f_{x_0}'
ight|^2 d\mathcal{H}^1
ight)^{rac{1}{2}},$$

and the *inradius* : $\dot{r}_{\Omega} := \sup_{x_0 \in \Omega} |f'_{x_0}(0)|$.

$$|f_{x_0}'(0)| \le \left(\frac{1}{2 \pi \varrho} \int_{\{|x|=\varrho\}} |f_{x_0}'|^2 d\mathcal{H}^1\right)^{\frac{1}{2}} \le \left(\frac{1}{2 \pi} \int_{\partial \mathbb{D}} |f_{x_0}'|^2 d\mathcal{H}^1\right)^{\frac{1}{2}}.$$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	
			000000000	

Lower bound in dim 2

Geometric Lemma

Let $\Omega \subset \mathbb{R}^2$ be a bounded simply connected open set, with $\partial \Omega \in C^{1,\alpha}$. Then, $|\Omega| \leq \pi \dot{\mathcal{R}}_{\Omega}^2$.

In particular, if Ω is a disk of radius *R*, we have $\dot{\mathcal{R}}_{\Omega} = R$ and equality holds.

Proof. Write

$$\int_{\mathbb{D}} |f_{x_0}'|^2 dw = \int_0^1 \left(\int_{\{|x|=\varrho\}} |f_{x_0}'|^2 d\mathcal{H}^1 \right) d\varrho.$$

and notice that $|f'_{x_0}|^2$ coincides with the Jacobian determinant of f_{x_0} : $|\Omega| = \int_{\mathbb{D}} |f'_{x_0}|^2 dw$.

Theorem (Lower bound in $\Omega \subset \mathbb{R}^2$)

Let $\delta > 0$ and let $\Omega \subset \mathbb{R}^2$ be a bounded simply connected open set, with $C^{1,\alpha}$ boundary, for some $0 < \alpha \leq 1$. Then,

$$\left(\frac{\mathcal{H}^{1}(\partial\Omega)}{2\pi}\right)^{2}\frac{T\left(B_{\dot{\mathcal{R}}_{\Omega}};\delta\right)}{\dot{\mathcal{R}}_{\Omega}^{2}}\leq T(\Omega;\delta).$$

Moreover, equality holds if and only if Ω is a disk.

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	
			000000000	

Lower bound in dim 2

Proof. Write

Geometric Lemma

Let $\Omega \subset \mathbb{R}^2$ be a bounded simply connected open set, with $\partial \Omega \in C^{1,\alpha}$. Then, $|\Omega| \leq \pi \dot{\mathcal{R}}_{\Omega}^2$.

In particular, if Ω is a disk of radius *R*, we have $\dot{\mathcal{R}}_{\Omega} = R$ and equality holds.

 $\int_{\mathbb{D}} |f_{x_0}'|^2 dw = \int_0^1 \left(\int_{\{|x|=\varrho\}} |f_{x_0}'|^2 d\mathcal{H}^1 \right) d\varrho.$

and notice that $|f'_{x_0}|^2$ coincides with the Jacobian determinant of f_{x_0} : $|\Omega| = \int_{\mathbb{D}} |f'_{x_0}|^2 dw$.

Theorem (Lower bound in $\Omega \subset \mathbb{R}^2$)

Let $\delta > 0$ and let $\Omega \subset \mathbb{R}^2$ be a bounded simply connected open set, with $C^{1,\alpha}$ boundary, for some $0 < \alpha \leq 1$. Then,

$$\left(\frac{\mathcal{H}^{1}(\partial\Omega)}{2\pi}\right)^{2}\frac{T\left(B_{\dot{\mathcal{R}}_{\Omega}};\delta\right)}{\dot{\mathcal{R}}_{\Omega}^{2}}\leq T(\Omega;\delta).$$

Moreover, equality holds if and only if Ω is a disk.

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	
			000000000	

Lower bound in dim 2

Proof. Write

Geometric Lemma

Let $\Omega \subset \mathbb{R}^2$ be a bounded simply connected open set, with $\partial \Omega \in C^{1,\alpha}$. Then, $|\Omega| \leq \pi \dot{\mathcal{R}}_{\Omega}^2$.

In particular, if Ω is a disk of radius *R*, we have $\dot{\mathcal{R}}_{\Omega} = R$ and equality holds.

 $\int_{\mathbb{D}} |f_{x_0}'|^2 \, dw = \int_0^1 \left(\int_{\{|x|=\varrho\}} |f_{x_0}'|^2 \, d\mathcal{H}^1 \right) \, d\varrho.$

and notice that $|f'_{x_0}|^2$ coincides with the Jacobian determinant of f_{x_0} : $|\Omega| = \int_{\mathbb{D}} |f'_{x_0}|^2 dw$.

Theorem (Lower bound in $\Omega \subset \mathbb{R}^2$)

Let $\delta > 0$ and let $\Omega \subset \mathbb{R}^2$ be a bounded simply connected open set, with $C^{1,\alpha}$ boundary, for some $0 < \alpha \leq 1$. Then,

$$\left(\frac{\mathcal{H}^{1}(\partial\Omega)}{2\pi}\right)^{2}\frac{T\left(B_{\dot{\mathcal{R}}_{\Omega}};\delta\right)}{\dot{\mathcal{R}}_{\Omega}^{2}}\leq T(\Omega;\delta).$$

Moreover, equality holds if and only if Ω is a disk.

Introduction	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End
				000000000	

Let us assume $\hat{\mathcal{R}}_{\Omega} = 1$ and all the remaining cases follow by scaling. Then, for $\forall \varepsilon > 0 \exists x_0 \in \Omega$ such that $\frac{1}{2\pi} \int_{\partial D} |f'_{x_0}|^2 d\mathcal{H}^{\dagger} < 1 + \varepsilon$. Now, we use the test function $\tilde{u} = u \circ h_{x_0}$, where we set

$$h_{x_0} := f_{x_0}^{-1} : \overline{\Omega} \to \overline{\mathbb{D}}.$$

Observe that $\tilde{u} \in W^{1,2}(\Omega)$, thanks to the properties of f_{x_0} . This yields

$$\frac{1}{T(\Omega;\delta)} \leq \frac{\int_{\Omega} |\nabla \widetilde{u}|^2 \, dx + \delta^2 \int_{\Omega} \widetilde{u}^2 \, dx}{\left(\int_{\partial\Omega} \widetilde{u} \, d\mathcal{H}^1\right)^2} = \left(\frac{\delta I_1(\delta)}{I_0(\delta)}\right)^2 \frac{\int_{\mathbb{D}} |\nabla u|^2 \, dw + \delta^2 \int_{\mathbb{D}} u^2 |f_{x_0}^{\prime}(w)|^2 \, dw}{\left(\mathcal{H}^1(\partial\Omega)\right)^2}$$

In order to estimate (I) we set

$$\Phi(\varrho) = \frac{1}{2 \pi \varrho} \int_{\{|w|=\varrho\}} \left| f_{x_0}' \right|^2 d\mathcal{H}^1,$$

By monotonicity of $\rho \mapsto \Phi(\rho)$ we obtain

We indicate the solution in
$$\mathbb{D}$$
 as

$$u(x) = \mathcal{U}_{\delta}(\varrho) = \frac{\varrho^{(-N)^2} I_{N/2-1}(\delta \, \varrho)}{\delta \, I_{N/2}(\delta)}$$

where
$$\varrho = |x|$$
.

$$\int_{B_1(0)} u^2 \left| f_{x_0}'(w) \right|^2 dw = 2 \pi \int_0^1 u^2 \, \Phi(\varrho) \, \varrho \, d\varrho \leq \left(2 \pi \int_0^1 u^2 \, \varrho \, d\varrho \right) \, \Phi(1) < (1+\varepsilon) \, \int_{\mathbb{D}} u^2 \, dx.$$

$$\frac{1}{T(\Omega;\delta)} \le \left(\frac{\delta I_1(\delta)}{I_0(\delta)}\right)^2 \frac{\int_{\partial \mathbb{D}} u \, d\mathcal{H}^1 + \delta^2 \varepsilon \int_{\mathbb{D}} u^2 \, dw}{\left(\mathcal{H}^1(\partial \Omega)\right)^2}.$$

Introduction	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End
				0000000000	

Let us assume $\dot{\mathcal{R}}_{\Omega} = 1$ and all the remaining cases follow by scaling. Then, for $\forall \varepsilon > 0 \exists x_0 \in \Omega$ such that $\frac{1}{2\pi} \int_{\partial D} |f'_{x_0}|^2 d\mathcal{H}^1 < 1 + \varepsilon$. Now, we use the test function $\tilde{u} = u \circ h_{x_0}$, where we set

$$h_{x_0} := f_{x_0}^{-1} : \overline{\Omega} \to \overline{\mathbb{D}}.$$

Observe that $\tilde{u} \in W^{1,2}(\Omega)$, thanks to the properties of f_{x_0} . This yields

$$\frac{1}{T(\Omega;\delta)} \leq \frac{\int_{\Omega} |\nabla \widetilde{u}|^2 \, dx + \delta^2 \int_{\Omega} \widetilde{u}^2 \, dx}{\left(\int_{\partial\Omega} \widetilde{u} \, d\mathcal{H}^1\right)^2} = \left(\frac{\delta I_1(\delta)}{I_0(\delta)}\right)^2 \frac{\int_{\mathbb{D}} |\nabla u|^2 \, dw + \delta^2 \int_{\mathbb{D}} u^2 |f_{x_0}'(w)|^2 \, dw}{\left(\mathcal{H}^1(\partial\Omega)\right)^2}$$

In order to estimate (I) we set

$$\Phi(\varrho) = \frac{1}{2 \pi \varrho} \int_{\{|w|=\varrho\}} \left| f_{x_0}' \right|^2 d\mathcal{H}^1,$$

By monotonicity of $\rho \mapsto \Phi(\rho)$ we obtain

We indicate the solution in
$$\mathbb{D}$$
 as

$$u(x) = \mathcal{U}_{\delta}(\varrho) = \frac{\varrho^{1-N/2} I_{N/2-1}(\delta \, \varrho)}{\delta I_{N/2}(\delta)}$$
where $\varrho = |x|$.

$$\int_{B_1(0)} u^2 \left| f_{x_0}'(w) \right|^2 dw = 2\pi \int_0^1 u^2 \Phi(\varrho) \, \varrho \, d\varrho \leq \left(2\pi \int_0^1 u^2 \, \varrho \, d\varrho \right) \, \Phi(1) < (1+\varepsilon) \int_{\mathbb{D}} u^2 \, dx.$$

$$\frac{1}{T(\Omega;\delta)} \leq \left(\frac{\delta I_1(\delta)}{I_0(\delta)}\right)^2 \frac{\int_{\partial \mathbb{D}} u \, d\mathcal{H}^1 + \delta^2 \varepsilon \int_{\mathbb{D}} u^2 \, dw}{\left(\mathcal{H}^1(\partial \Omega)\right)^2}.$$

Introduction	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End
				000000000	

Let us assume $\dot{\mathcal{R}}_{\Omega} = 1$ and all the remaining cases follow by scaling. Then, for $\forall \varepsilon > 0 \exists x_0 \in \Omega$ such that $\frac{1}{2\pi} \int_{\partial D} |f'_{x_0}|^2 d\mathcal{H}^1 < 1 + \varepsilon$. Now, we use the test function $\tilde{u} = u \circ h_{x_0}$, where we set

$$h_{x_0} := f_{x_0}^{-1} : \overline{\Omega} \to \overline{\mathbb{D}}.$$

Observe that $\tilde{u} \in W^{1,2}(\Omega)$, thanks to the properties of f_{x_0} . This yields

$$\frac{1}{T(\Omega;\delta)} \leq \frac{\int_{\Omega} |\nabla \widetilde{u}|^2 \, dx + \delta^2 \int_{\Omega} \widetilde{u}^2 \, dx}{\left(\int_{\partial \Omega} \widetilde{u} \, d\mathcal{H}^1\right)^2} = \left(\frac{\delta I_1(\delta)}{I_0(\delta)}\right)^2 \frac{\int_{\mathbb{D}} |\nabla u|^2 \, dw + \delta^2 \int_{\mathbb{D}} u^2 |f_{x_0}'(w)|^2 \, dw}{\left(\mathcal{H}^1(\partial \Omega)\right)^2}$$

In order to estimate (I) we set

$$\Phi(\varrho) = \frac{1}{2 \pi \varrho} \int_{\{|w|=\varrho\}} |f'_{x_0}|^2 d\mathcal{H}^1,$$

By monotonicity of $\rho \mapsto \Phi(\rho)$ we obtain

We indicate the solution in
$$\mathbb{D}$$
 as

$$u(x) = \mathcal{U}_{\delta}(\varrho) = \frac{\varrho^{1-N/2} I_{N/2-1}(\delta \, \varrho)}{\delta I_{N/2}(\delta)}$$
where $\varrho = |x|$.

1

$$\int_{B_1(0)} u^2 \left| f_{x_0}'(w) \right|^2 dw = 2 \pi \int_0^1 u^2 \Phi(\varrho) \, \varrho \, d\varrho \leq \left(2 \pi \int_0^1 u^2 \, \varrho \, d\varrho \right) \, \Phi(1) < (1+\varepsilon) \int_{\mathbb{D}} u^2 \, dx.$$

$$\frac{1}{T(\Omega;\delta)} \leq \left(\frac{\delta I_1(\delta)}{I_0(\delta)}\right)^2 \frac{\int_{\partial \mathbb{D}} u \, d\mathcal{H}^1 + \delta^2 \varepsilon \int_{\mathbb{D}} u^2 \, dw}{\left(\mathcal{H}^1(\partial \Omega)\right)^2}.$$

Introduction	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End
				0000000000	

Let us assume $\dot{\mathcal{R}}_{\Omega} = 1$ and all the remaining cases follow by scaling. Then, for $\forall \varepsilon > 0 \exists x_0 \in \Omega$ such that $\frac{1}{2\pi} \int_{\partial D} |f'_{x_0}|^2 d\mathcal{H}^1 < 1 + \varepsilon$. Now, we use the test function $\tilde{u} = u \circ h_{x_0}$, where we set

$$h_{x_0} := f_{x_0}^{-1} : \overline{\Omega} \to \overline{\mathbb{D}}.$$

Observe that $\tilde{u} \in W^{1,2}(\Omega)$, thanks to the properties of f_{x_0} . This yields

$$\frac{1}{T(\Omega;\delta)} \leq \frac{\int_{\Omega} |\nabla \widetilde{u}|^2 \, dx + \delta^2 \int_{\Omega} \widetilde{u}^2 \, dx}{\left(\int_{\partial\Omega} \widetilde{u} \, d\mathcal{H}^1\right)^2} = \left(\frac{\delta I_1(\delta)}{I_0(\delta)}\right)^2 \frac{\int_{\mathbb{D}} |\nabla u|^2 \, dw + \delta^2 \int_{\mathbb{D}} u^2 |f'_{x_0}(w)|^2 \, dw}{\left(\mathcal{H}^1(\partial\Omega)\right)^2}$$

In order to estimate (I) we set

$$\Phi(\varrho) = \frac{1}{2 \pi \varrho} \int_{\{|w|=\varrho\}} |f'_{x_0}|^2 d\mathcal{H}^1,$$

By monotonicity of $\rho \mapsto \Phi(\rho)$ we obtain

We indicate the solution in
$$\mathbb{D}$$
 as

$$u(x) = \mathcal{U}_{\delta}(\varrho) = \frac{\varrho^{1-N/2} I_{N/2-1}(\delta \varrho)}{\delta I_{N/2}(\delta)}$$
where $\varrho = |x|$.

1

$$\int_{B_1(0)} u^2 \left| f_{x_0}'(w) \right|^2 dw = 2 \pi \int_0^1 u^2 \Phi(\varrho) \, \varrho \, d\varrho \leq \left(2 \pi \int_0^1 u^2 \, \varrho \, d\varrho \right) \, \Phi(1) < (1+\varepsilon) \int_{\mathbb{D}} u^2 \, dx.$$

$$\frac{1}{T(\Omega;\delta)} \le \left(\frac{\delta I_1(\delta)}{I_0(\delta)}\right)^2 \frac{\int_{\partial \mathbb{D}} u \, d\mathcal{H}^1 + \delta^2 \varepsilon \int_{\mathbb{D}} u^2 \, dw}{\left(\mathcal{H}^1(\partial \Omega)\right)^2}.$$

Introduction	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End
				0000000000	

Let us assume $\dot{\mathcal{R}}_{\Omega} = 1$ and all the remaining cases follow by scaling. Then, for $\forall \varepsilon > 0 \exists x_0 \in \Omega$ such that $\frac{1}{2\pi} \int_{\partial D} |f'_{x_0}|^2 d\mathcal{H}^1 < 1 + \varepsilon$. Now, we use the test function $\tilde{u} = u \circ h_{x_0}$, where we set

$$h_{x_0} := f_{x_0}^{-1} : \overline{\Omega} \to \overline{\mathbb{D}}.$$

Observe that $\tilde{u} \in W^{1,2}(\Omega)$, thanks to the properties of f_{x_0} . This yields

$$\frac{1}{T(\Omega;\delta)} \leq \frac{\int_{\Omega} |\nabla \widetilde{u}|^2 \, dx + \delta^2 \int_{\Omega} \widetilde{u}^2 \, dx}{\left(\int_{\partial\Omega} \widetilde{u} \, d\mathcal{H}^1\right)^2} = \left(\frac{\delta I_1(\delta)}{I_0(\delta)}\right)^2 \frac{\int_{\mathbb{D}} |\nabla u|^2 \, dw + \delta^2 \int_{\mathbb{D}} u^2 |f'_{x_0}(w)|^2 \, dw}{\left(\mathcal{H}^1(\partial\Omega)\right)^2}$$

In order to estimate (I) we set

$$\Phi(\varrho) = \frac{1}{2 \pi \varrho} \int_{\{|w|=\varrho\}} |f'_{x_0}|^2 d\mathcal{H}^1,$$

By monotonicity of $\rho \mapsto \Phi(\rho)$ we obtain

We indicate the solution in \mathbb{D} as $u(x) = \mathcal{U}_{\delta}(\varrho) = \frac{\varrho^{1-N/2} I_{N/2-1}(\delta \, \varrho)}{\delta I_{N/2}(\delta)}$ where $\rho = |x|$.

1

$$\int_{B_1(0)} u^2 |f_{x_0}'(w)|^2 dw = 2 \pi \int_0^1 u^2 \Phi(\varrho) \, \varrho \, d\varrho \leq \left(2 \pi \int_0^1 u^2 \, \varrho \, d\varrho\right) \, \Phi(1) < (1+\varepsilon) \int_{\mathbb{D}} u^2 \, dx.$$

$$\frac{1}{T(\Omega;\delta)} \le \left(\frac{\delta I_1(\delta)}{I_0(\delta)}\right)^2 \frac{\int_{\partial \mathbb{D}} u \, d\mathcal{H}^1 + \delta^2 \varepsilon \int_{\mathbb{D}} u^2 \, dw}{\left(\mathcal{H}^1(\partial \Omega)\right)^2}$$

Introduction	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End
				0000000000	

Let us assume $\dot{\mathcal{R}}_{\Omega} = 1$ and all the remaining cases follow by scaling. Then, for $\forall \varepsilon > 0 \exists x_0 \in \Omega$ such that $\frac{1}{2\pi} \int_{\partial D} |f'_{x_0}|^2 d\mathcal{H}^1 < 1 + \varepsilon$. Now, we use the test function $\tilde{u} = u \circ h_{x_0}$, where we set

$$h_{x_0} := f_{x_0}^{-1} : \overline{\Omega} \to \overline{\mathbb{D}}.$$

Observe that $\widetilde{u} \in W^{1,2}(\Omega)$, thanks to the properties of f_{x_0} . This yields

$$\frac{1}{T(\Omega;\delta)} \leq \frac{\int_{\Omega} |\nabla \widetilde{u}|^2 \, dx + \delta^2 \int_{\Omega} \widetilde{u}^2 \, dx}{\left(\int_{\partial \Omega} \widetilde{u} \, d\mathcal{H}^1\right)^2} = \left(\frac{\delta I_1(\delta)}{I_0(\delta)}\right)^2 \frac{\int_{\mathbb{D}} |\nabla u|^2 \, dw + \delta^2 \int_{\mathbb{D}} u^2 |f_{x_0}'(w)|^2 \, dw}{\left(\mathcal{H}^1(\partial\Omega)\right)^2}$$

In order to estimate (I) we set

$$\Phi(\varrho) = \frac{1}{2 \pi \varrho} \int_{\{|w|=\varrho\}} |f'_{x_0}|^2 d\mathcal{H}^1,$$

By monotonicity of $\rho \mapsto \Phi(\rho)$ we obtain

We indicate the solution in \mathbb{D} as $u(x) = \mathcal{U}_{\delta}(\varrho) = \frac{\varrho^{1-N/2} I_{N/2-1}(\delta \, \varrho)}{\delta I_{N/2}(\delta)}$ where $\varrho = |x|$.

1

$$\int_{B_1(0)} u^2 \left| f_{x_0}'(w) \right|^2 dw = 2 \pi \int_0^1 u^2 \Phi(\varrho) \, \varrho \, d\varrho \leq \left(2 \pi \int_0^1 u^2 \, \varrho \, d\varrho \right) \, \Phi(1) < (1+\varepsilon) \, \int_{\mathbb{D}} u^2 \, dx.$$

$$\frac{1}{T(\Omega;\delta)} \leq \left(\frac{\delta I_1(\delta)}{I_0(\delta)}\right)^2 \frac{\int_{\partial \mathbb{D}} u \, d\mathcal{H}^1 + \delta^2 \varepsilon \int_{\mathbb{D}} u^2 \, dw}{\left(\mathcal{H}^1(\partial \Omega)\right)^2}$$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	
			0000000000	

Convex sets N-dim

Theorem (Lower bound for convex sets)

Let $\delta > 0$ and let $\Omega \subset \mathbb{R}^N$ be an open bounded **convex** set. Then,

$$T(\Omega; \delta) > \frac{\mathcal{H}^{N-1}(\partial \Omega)}{\delta \tanh(\delta r_{\Omega})}.$$

Moreover, the estimate is sharp in the following sense: we have

$$\lim_{n \to \infty} \frac{T(\Omega_n; \delta) \tanh(\delta r_{\Omega_n})}{\mathcal{H}^{N-1}(\partial \Omega_n)} = \frac{1}{\delta}, \qquad \text{where } \Omega_n := (-n, n)^{N-1} \times (-1, 1).$$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	
			0000000000	

Convex sets N-dim

Theorem (Lower bound for convex sets)

Let $\delta > 0$ and let $\Omega \subset \mathbb{R}^N$ be an open bounded **convex** set. Then,

$$T(\Omega; \delta) > \frac{\mathcal{H}^{N-1}(\partial \Omega)}{\delta \tanh(\delta r_{\Omega})}.$$

Moreover, the estimate is sharp in the following sense: we have

$$\lim_{n \to \infty} \frac{T(\Omega_n; \delta) \tanh(\delta r_{\Omega_n})}{\mathcal{H}^{N-1}(\partial \Omega_n)} = \frac{1}{\delta}, \qquad \text{where } \Omega_n := (-n, n)^{N-1} \times (-1, 1).$$

Method of interior parallels [E. Makai, 1954][G. Pòlya, 1960]

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	
			0000000000	

Convex sets N-dim

Theorem (Lower bound for convex sets)

Let $\delta > 0$ and let $\Omega \subset \mathbb{R}^N$ be an open bounded **convex** set. Then,

$$T(\Omega; \delta) > \frac{\mathcal{H}^{N-1}(\partial \Omega)}{\delta \tanh(\delta r_{\Omega})}.$$

Moreover, the estimate is sharp in the following sense: we have

$$\lim_{n \to \infty} \frac{T(\Omega_n; \delta) \tanh(\delta r_{\Omega_n})}{\mathcal{H}^{N-1}(\partial \Omega_n)} = \frac{1}{\delta}, \qquad \text{where } \Omega_n := (-n, n)^{N-1} \times (-1, 1).$$

Method of interior parallels [E. Makai, 1954][G. Pòlya, 1960]

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	
			0000000000	

1D Lemma

Lemma

For every $\delta > 0$, we have

$$\alpha(\delta) := \sup_{\varphi \in W^{1,2}(I)} \frac{(\varphi(0))^2}{\int_I |\varphi'|^2 dt + \delta^2 \int_I \varphi^2 dt} = \frac{1}{\delta \tanh(\delta)}.$$

Moreover, the maximum is attained by

$$u_I(t) = \frac{1}{\delta} \left(\frac{\cosh(\delta t)}{\tanh(\delta)} - \sinh(\delta t) \right),$$

Proof. We rephrase the maximization problem to

$$\alpha(\delta) = \sup_{\varphi \in W^{1,2}(I)} \left\{ 2 \varphi(0) - \int_{I} |\varphi'|^2 dt - \delta^2 \int_{I} \varphi^2 dt \right\}$$

which is the weak formulation of

$$\begin{cases} -\varphi'' + \delta^2 \varphi &= 0, & \text{in } I, \\ \varphi'(0) &= -1, \\ \varphi'(1) &= 0. \end{cases}$$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	
			0000000000	

1D Lemma

Lemma

For every $\delta > 0$, we have

$$\alpha(\delta) := \sup_{\varphi \in W^{1,2}(I)} \frac{(\varphi(0))^2}{\int_I |\varphi'|^2 dt + \delta^2 \int_I \varphi^2 dt} = \frac{1}{\delta \tanh(\delta)}.$$

Moreover, the maximum is attained by

$$u_{I}(t) = \frac{1}{\delta} \left(\frac{\cosh(\delta t)}{\tanh(\delta)} - \sinh(\delta t) \right),$$

Proof. We rephrase the maximization problem to

$$\alpha(\delta) = \sup_{\varphi \in W^{1,2}(I)} \left\{ 2 \varphi(0) - \int_{I} |\varphi'|^2 dt - \delta^2 \int_{I} \varphi^2 dt \right\},$$

which is the weak formulation of

$$\begin{cases} -\varphi'' + \delta^2 \varphi &= 0, \quad \text{in } I, \\ \varphi'(0) &= -1, \\ \varphi'(1) &= 0. \end{cases}$$

Proof Theorem: Lower bounds for convex sets.

Without loss of generality we prove it for $r_{\Omega} = 1$.

We introduce $\varphi(x) = u_l(d_\Omega(x))$ as test function in the torsion functional, where u_l is the solution of 1 dimensional problem. Then, by Coarea Formula and the fact that $|\nabla d_\Omega| = 1$ a.e. in Ω ,

$$T(\Omega;\delta) \geq \frac{\left(\int_{\partial\Omega} \varphi \, d\mathcal{H}^{N-1}\right)^2}{\int_{\Omega} |\nabla\varphi|^2 \, dx + \delta^2 \int_{\Omega} \varphi^2 \, dx} = \frac{\left(u_I(0)\right)^2 \left(\mathcal{H}^{N-1}(\partial\Omega)\right)^2}{\int_0^1 \left[\left|u_I'(t)\right|^2 + \delta^2 \left(u_I(t)\right)^2\right] \mathcal{H}^{N-1}(\partial\Omega_I) \, dt}$$
$$\geq \frac{\left(u_I(0)\right)^2}{\int_0^1 \left[\left|u_I'(t)\right|^2 + \delta^2 \left(u_I(t)\right)^2\right] \, dt} \, \mathcal{H}^{N-1}(\partial\Omega).$$

We have used that $\mathcal{H}^{N-1}(\partial \Omega_t) \leq \mathcal{H}^{N-1}(\partial \Omega)$ for $t \in (0, r_{\Omega})$, which is strict for an open bounded convex set. The result follows from previous Lemma.

Introduction	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End
				0000000000	

Proof Theorem: Lower bounds for convex sets.

Without loss of generality we prove it for $r_{\Omega} = 1$.

We introduce $\varphi(x) = u_I(d_\Omega(x))$ as test function in the torsion functional, where u_I is the solution of 1 dimensional problem. Then, by Coarea Formula and the fact that $|\nabla d_\Omega| = 1$ a.e. in Ω ,

$$T(\Omega;\delta) \geq \frac{\left(\int_{\partial\Omega} \varphi \, d\mathcal{H}^{N-1}\right)^2}{\int_{\Omega} |\nabla\varphi|^2 \, dx + \delta^2 \int_{\Omega} \varphi^2 \, dx} = \frac{\left(u_I(0)\right)^2 \left(\mathcal{H}^{N-1}(\partial\Omega)\right)^2}{\int_0^1 \left[|u_I'(t)|^2 + \delta^2 \left(u_I(t)\right)^2\right] \mathcal{H}^{N-1}(\partial\Omega_I) \, dt}$$
$$\geq \frac{\left(u_I(0)\right)^2}{\int_0^1 \left[|u_I'(t)|^2 + \delta^2 \left(u_I(t)\right)^2\right] \, dt} \, \mathcal{H}^{N-1}(\partial\Omega).$$

We have used that $\mathcal{H}^{N-1}(\partial \Omega_t) \leq \mathcal{H}^{N-1}(\partial \Omega)$ for $t \in (0, r_{\Omega})$, which is strict for an open bounded convex set. The result follows from previous Lemma.

Introduction	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End
				00000000000	

Proof Theorem: Lower bounds for convex sets.

Without loss of generality we prove it for $r_{\Omega} = 1$.

We introduce $\varphi(x) = u_I(d_\Omega(x))$ as test function in the torsion functional, where u_I is the solution of 1 dimensional problem. Then, by Coarea Formula and the fact that $|\nabla d_\Omega| = 1$ a.e. in Ω ,

$$T(\Omega;\delta) \geq \frac{\left(\int_{\partial\Omega} \varphi \, d\mathcal{H}^{N-1}\right)^2}{\int_{\Omega} |\nabla\varphi|^2 \, dx + \delta^2 \int_{\Omega} \varphi^2 \, dx} = \frac{\left(u_I(0)\right)^2 \left(\mathcal{H}^{N-1}(\partial\Omega)\right)^2}{\int_0^1 \left[\left|u_I'(t)\right|^2 + \delta^2 \left(u_I(t)\right)^2\right] \mathcal{H}^{N-1}(\partial\Omega_I) \, dt}$$
$$\geq \frac{\left(u_I(0)\right)^2}{\int_0^1 \left[\left|u_I'(t)\right|^2 + \delta^2 \left(u_I(t)\right)^2\right] \, dt} \, \mathcal{H}^{N-1}(\partial\Omega).$$

We have used that $\mathcal{H}^{N-1}(\partial\Omega_t) \leq \mathcal{H}^{N-1}(\partial\Omega)$ for $t \in (0, r_{\Omega})$, which is strict for an open bounded convex set. The result follows from previous Lemma.

Introduction	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End
				00000000000	

Convex sets: upper bounds N-dim

Recall the dual formulation of the torsion problem:

$$T(\Omega; \delta) = \min_{(\phi, g) \in \mathcal{A}^+(\Omega)} \left\{ \int_{\Omega} |\phi|^2 \, dx + \delta^2 \int_{\Omega} g^2 \, dx \right\},$$

where, $\mathcal{A}^+(\Omega) = \left\{ (\phi, g) \in L^2(\Omega; \mathbb{R}^N) \times L^2(\Omega) : \begin{array}{c} -\operatorname{div} \phi + \delta^2 g \ge 0, & \text{in } \Omega \\ \langle \phi, \nu_{\Omega} \rangle \ge 1, & \text{on } \partial\Omega \end{array} \right\}$

For an open bounded convex set $\Omega \subset \mathbb{R}^N$, we define its *proximal radius* by

$$L_{\Omega} := \inf \left\{ R > 0 : \exists x_0 \in M(\Omega) \text{ such that } \Omega \subset B_R(x_0) \right\}.$$

Theorem: Upper bound N-dim

Let $\delta > 0$ and let $\Omega \subset \mathbb{R}^N$ be an open bounded **convex** set. Then,

$$T(\Omega;\delta) \le \left(\frac{r_{\Omega}}{L_{\Omega}}\right)^{N-2} \left(\frac{I_{N/2}(\delta L_{\Omega})}{I_{N/2}(\delta r_{\Omega})}\right)^2 T(B_{L_{\Omega}};\delta).$$

Moreover, equality holds if and only if Ω is a ball.

Introduction	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End
				00000000000	

Convex sets: upper bounds N-dim

Recall the dual formulation of the torsion problem:

$$T(\Omega; \delta) = \min_{(\phi, g) \in \mathcal{A}^+(\Omega)} \left\{ \int_{\Omega} |\phi|^2 \, dx + \delta^2 \int_{\Omega} g^2 \, dx \right\},$$

where, $\mathcal{A}^+(\Omega) = \left\{ (\phi, g) \in L^2(\Omega; \mathbb{R}^N) \times L^2(\Omega) : \begin{array}{c} -\operatorname{div} \phi + \delta^2 g \ge 0, & \operatorname{in} \Omega \\ \langle \phi, \nu_{\Omega} \rangle \ge 1, & \operatorname{on} \partial\Omega \end{array} \right\}$

For an open bounded convex set $\Omega \subset \mathbb{R}^N$, we define its *proximal radius* by

$$L_{\Omega} := \inf \left\{ R > 0 : \exists x_0 \in M(\Omega) \text{ such that } \Omega \subset B_R(x_0) \right\}.$$

Theorem: Upper bound N-dim

Let $\delta > 0$ and let $\Omega \subset \mathbb{R}^N$ be an open bounded **convex** set. Then,

$$T(\Omega;\delta) \le \left(\frac{r_{\Omega}}{L_{\Omega}}\right)^{N-2} \left(\frac{I_{N/2}(\delta L_{\Omega})}{I_{N/2}(\delta r_{\Omega})}\right)^2 T(B_{L_{\Omega}};\delta)$$

Moreover, equality holds if and only if Ω is a ball.
Introduction	Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	End
				00000000000	

Convex sets: upper bounds N-dim

Recall the dual formulation of the torsion problem:

$$T(\Omega; \delta) = \min_{(\phi,g) \in \mathcal{A}^{+}(\Omega)} \left\{ \int_{\Omega} |\phi|^{2} dx + \delta^{2} \int_{\Omega} g^{2} dx \right\},$$

where, $\mathcal{A}^{+}(\Omega) = \left\{ (\phi,g) \in L^{2}(\Omega; \mathbb{R}^{N}) \times L^{2}(\Omega) : -\operatorname{div} \phi + \delta^{2} g \ge 0, \quad \operatorname{in} \Omega \atop \langle \phi, \nu_{\Omega} \rangle \ge 1, \quad \operatorname{on} \partial \Omega \end{array} \right\}$

For an open bounded convex set $\Omega \subset \mathbb{R}^N$, we define its *proximal radius* by

$$L_{\Omega} := \inf \left\{ R > 0 : \exists x_0 \in M(\Omega) \text{ such that } \Omega \subset B_R(x_0) \right\}.$$

Theorem: Upper bound N-dim

Let $\delta > 0$ and let $\Omega \subset \mathbb{R}^N$ be an open bounded **convex** set. Then,

$$T(\Omega;\delta) \le \left(\frac{r_{\Omega}}{L_{\Omega}}\right)^{N-2} \left(\frac{I_{N/2}(\delta L_{\Omega})}{I_{N/2}(\delta r_{\Omega})}\right)^2 T(B_{L_{\Omega}};\delta).$$

Moreover, equality holds if and only if Ω is a ball.

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	
			0000000000	

We assume that the proximal center of Ω coincides with the origin. Then, we set

$$C_{\Omega,\delta} = \mathcal{U}_{\delta L_{\Omega}}'\left(\frac{r_{\Omega}}{L_{\Omega}}\right), \quad \phi_0 = \frac{1}{C_{\Omega,\delta}} \nabla u_{B_{L_{\Omega}},\delta} \quad \text{and} \quad g_0 = \frac{1}{C_{\Omega,\delta}} u_{B_{L_{\Omega}},\delta}.$$

Notice that by construction we have that $B_{r_{\Omega}}(x_{\Omega}) \subset \Omega \subset B_{L_{\Omega}}(x_{\Omega})$. Then,

$$-\operatorname{div}\phi_0 + \delta^2 g_0 = \frac{1}{C_{\Omega,\delta}} \left(-\Delta u_{B_{L_\Omega},\delta} + \delta^2 u_{B_{L_\Omega},\delta} \right) = 0, \qquad \text{in } \Omega,$$

and, by rescaling, in $\partial \Omega$ it holds that

$$\langle \phi_0, \nu_{\partial\Omega} \rangle = \frac{1}{C_{\Omega,\delta}} \frac{1}{|x|} \mathcal{U}_{\delta L_{\Omega}}^{\prime} \left(\frac{|x|}{L_{\Omega}} \right) \langle x, \nu_{\partial\Omega} \rangle \geq \frac{1}{C_{\Omega,\delta}} \frac{1}{|x|} \mathcal{U}_{\delta L_{\Omega}}^{\prime} \left(\frac{|x|}{L_{\Omega}} \right) r_{\Omega},$$

Now, by monotonicity of $\frac{\mathcal{U}_{\delta}'(\varrho)}{\varrho}$ we estimate the flux of ϕ_0 on the boundary of Ω by

$$\langle \phi_0, \nu_{\partial\Omega} \rangle \geq \frac{1}{C_{\Omega,\delta}} \, \mathcal{U}'_{\delta L_{\Omega}} \left(\frac{r_{\Omega}}{L_{\Omega}} \right).$$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	
			0000000000	

We assume that the proximal center of Ω coincides with the origin. Then, we set

$$C_{\Omega,\delta} = \mathcal{U}_{\delta L_{\Omega}}'\left(\frac{r_{\Omega}}{L_{\Omega}}\right), \quad \phi_0 = \frac{1}{C_{\Omega,\delta}} \nabla u_{B_{L_{\Omega}},\delta} \quad \text{and} \quad g_0 = \frac{1}{C_{\Omega,\delta}} u_{B_{L_{\Omega}},\delta}.$$

Notice that by construction we have that $B_{r_{\Omega}}(x_{\Omega}) \subset \Omega \subset B_{L_{\Omega}}(x_{\Omega})$. Then,

$$-\operatorname{div}\phi_0+\delta^2 g_0=\frac{1}{C_{\Omega,\delta}}\left(-\Delta u_{B_{L_\Omega},\delta}+\delta^2 u_{B_{L_\Omega},\delta}\right)=0,\qquad\text{in }\Omega,$$

and, by rescaling, in $\partial \Omega$ it holds that

$$\langle \phi_0, \nu_{\partial\Omega} \rangle = \frac{1}{C_{\Omega,\delta}} \frac{1}{|x|} \mathcal{U}_{\delta L_{\Omega}}^{\prime} \left(\frac{|x|}{L_{\Omega}} \right) \langle x, \nu_{\partial\Omega} \rangle \ge \frac{1}{C_{\Omega,\delta}} \frac{1}{|x|} \mathcal{U}_{\delta L_{\Omega}}^{\prime} \left(\frac{|x|}{L_{\Omega}} \right) r_{\Omega},$$

Now, by monotonicity of $\frac{\mathcal{U}_{\delta}'(\varrho)}{\varrho}$ we estimate the flux of ϕ_0 on the boundary of Ω by

$$\langle \phi_0, \nu_{\partial\Omega} \rangle \geq \frac{1}{C_{\Omega,\delta}} \, \mathcal{U}'_{\delta L_{\Omega}} \left(\frac{r_{\Omega}}{L_{\Omega}} \right).$$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	
			0000000000	

We assume that the proximal center of Ω coincides with the origin. Then, we set

$$C_{\Omega,\delta} = \mathcal{U}_{\delta L_{\Omega}}'\left(\frac{r_{\Omega}}{L_{\Omega}}\right), \quad \phi_0 = \frac{1}{C_{\Omega,\delta}} \nabla u_{B_{L_{\Omega}},\delta} \quad \text{and} \quad g_0 = \frac{1}{C_{\Omega,\delta}} u_{B_{L_{\Omega}},\delta}.$$

Notice that by construction we have that $B_{r_{\Omega}}(x_{\Omega}) \subset \Omega \subset B_{L_{\Omega}}(x_{\Omega})$. Then,

$$-\operatorname{div}\phi_0+\delta^2 g_0=\frac{1}{C_{\Omega,\delta}}\left(-\Delta u_{B_{L_\Omega},\delta}+\delta^2 u_{B_{L_\Omega},\delta}\right)=0,\qquad\text{in }\Omega,$$

and, by rescaling, in $\partial \Omega$ it holds that

$$\langle \phi_0, \nu_{\partial\Omega}
angle = rac{1}{C_{\Omega,\delta}} rac{1}{|x|} \mathcal{U}_{\delta L_{\Omega}}'\left(rac{|x|}{L_{\Omega}}
ight) \langle x,
u_{\partial\Omega}
angle \geq rac{1}{C_{\Omega,\delta}} rac{1}{|x|} \mathcal{U}_{\delta L_{\Omega}}'\left(rac{|x|}{L_{\Omega}}
ight) r_{\Omega},$$

Now, by monotonicity of $\frac{\mathcal{U}_{\delta}'(\varrho)}{\varrho}$ we estimate the flux of ϕ_0 on the boundary of Ω by

$$\langle \phi_0, \nu_{\partial\Omega} \rangle \geq \frac{1}{C_{\Omega,\delta}} \, \mathcal{U}'_{\delta L_{\Omega}} \left(\frac{r_{\Omega}}{L_{\Omega}} \right).$$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	
			0000000000	

We assume that the proximal center of Ω coincides with the origin. Then, we set

$$C_{\Omega,\delta} = \mathcal{U}_{\delta L_{\Omega}}'\left(\frac{r_{\Omega}}{L_{\Omega}}\right), \quad \phi_0 = \frac{1}{C_{\Omega,\delta}} \nabla u_{B_{L_{\Omega}},\delta} \quad \text{and} \quad g_0 = \frac{1}{C_{\Omega,\delta}} u_{B_{L_{\Omega}},\delta}.$$

Notice that by construction we have that $B_{r_{\Omega}}(x_{\Omega}) \subset \Omega \subset B_{L_{\Omega}}(x_{\Omega})$. Then,

$$-\operatorname{div}\phi_0+\delta^2 g_0=\frac{1}{C_{\Omega,\delta}}\left(-\Delta u_{B_{L_\Omega},\delta}+\delta^2 u_{B_{L_\Omega},\delta}\right)=0,\qquad\text{in }\Omega,$$

and, by rescaling, in $\partial \Omega$ it holds that

$$\langle \phi_0, \nu_{\partial\Omega}
angle = rac{1}{C_{\Omega,\delta}} rac{1}{|x|} \mathcal{U}_{\delta L_{\Omega}}'\left(rac{|x|}{L_{\Omega}}
ight) \langle x,
u_{\partial\Omega}
angle \geq rac{1}{C_{\Omega,\delta}} rac{1}{|x|} \mathcal{U}_{\delta L_{\Omega}}'\left(rac{|x|}{L_{\Omega}}
ight) r_{\Omega},$$

Now, by monotonicity of $\frac{\mathcal{U}_{\delta}'(\varrho)}{\varrho}$ we estimate the flux of ϕ_0 on the boundary of Ω by

$$\langle \phi_0, \nu_{\partial\Omega} \rangle \geq \frac{1}{C_{\Omega,\delta}} \, \mathcal{U}'_{\delta L_{\Omega}} \left(\frac{r_{\Omega}}{L_{\Omega}} \right).$$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	
			0000000000	

We assume that the proximal center of Ω coincides with the origin. Then, we set

$$C_{\Omega,\delta} = \mathcal{U}_{\delta L_{\Omega}}'\left(\frac{r_{\Omega}}{L_{\Omega}}\right), \quad \phi_0 = \frac{1}{C_{\Omega,\delta}} \nabla u_{B_{L_{\Omega}},\delta} \quad \text{and} \quad g_0 = \frac{1}{C_{\Omega,\delta}} u_{B_{L_{\Omega}},\delta}.$$

Notice that by construction we have that $B_{r_{\Omega}}(x_{\Omega}) \subset \Omega \subset B_{L_{\Omega}}(x_{\Omega})$. Then,

$$-\operatorname{div}\phi_0+\delta^2 g_0=\frac{1}{C_{\Omega,\delta}}\left(-\Delta u_{B_{L_\Omega},\delta}+\delta^2 u_{B_{L_\Omega},\delta}\right)=0,\qquad\text{in }\Omega,$$

and, by rescaling, in $\partial \Omega$ it holds that

$$\langle \phi_0, \nu_{\partial\Omega}
angle = rac{1}{C_{\Omega,\delta}} rac{1}{|x|} \mathcal{U}_{\delta L_{\Omega}}'\left(rac{|x|}{L_{\Omega}}
ight) \langle x,
u_{\partial\Omega}
angle \geq rac{1}{C_{\Omega,\delta}} rac{1}{|x|} \mathcal{U}_{\delta L_{\Omega}}'\left(rac{|x|}{L_{\Omega}}
ight) r_{\Omega},$$

Now, by monotonicity of $\frac{\mathcal{U}_{\delta}'(\varrho)}{\varrho}$ we estimate the flux of ϕ_0 on the boundary of Ω by

$$\langle \phi_0, \nu_{\partial\Omega} \rangle \geq rac{1}{C_{\Omega,\delta}} \, \mathcal{U}'_{\delta \, L_\Omega} \left(rac{r_\Omega}{L_\Omega}
ight).$$

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	
			000000000	

The equality case. It is clear that the equality holds for any ball. Then, we assume that the inequality holds. In particular, it must be true that

$$\int_{\Omega} (u_{B_{L_{\Omega}},\delta})^2 dx = \int_{B_{L_{\Omega}}} (u_{B_{L_{\Omega}},\delta})^2 dx.$$

Since $u_{B_{L_{\Omega}},\delta}$ does not vanish, we finally get that

$$|B_{L_\Omega}\setminus\Omega|=0.$$

Convexity implies that Ω must coincide with the ball $B_{L_{\Omega}}$.

From the previous result, we can get the following sharp geometric estimate, involving four geometric quantities.

Corollary: Sharp geometric estimate

Let $\Omega \subset \mathbb{R}^N$ be an open bounded convex set. Then, we have

$$\frac{(\mathcal{H}^{N-1}(\partial\Omega))^2}{|\Omega|} \le N^2 \,\omega_N \,\left(\frac{L_\Omega}{r_\Omega}\right)^2 \,L_\Omega^{N-2}.$$

Equality holds if and only if Ω is a ball.

Boundary Torsional Rigidity	Some Properties of the Torsion Function	Exact Solutions in Some Special Sets	Geometric Estimates	
			000000000	

The equality case. It is clear that the equality holds for any ball. Then, we assume that the inequality holds. In particular, it must be true that

$$\int_{\Omega} (u_{B_{L_{\Omega}},\delta})^2 dx = \int_{B_{L_{\Omega}}} (u_{B_{L_{\Omega}},\delta})^2 dx.$$

Since $u_{B_{L_{\Omega}},\delta}$ does not vanish, we finally get that

$$|B_{L_\Omega}\setminus \Omega|=0.$$

Convexity implies that Ω must coincide with the ball $B_{L_{\Omega}}$.

From the previous result, we can get the following sharp geometric estimate, involving four geometric quantities.

Corollary: Sharp geometric estimate

Let $\Omega \subset \mathbb{R}^N$ be an open bounded convex set. Then, we have

$$\frac{(\mathcal{H}^{N-1}(\partial\Omega))^2}{|\Omega|} \leq N^2 \,\omega_N \,\left(\frac{L_\Omega}{r_\Omega}\right)^2 \,L_\Omega^{N-2}.$$

Equality holds if and only if Ω is a ball.

End

Muchas gracias!