

The Wiener criterion for nonlocal Dirichlet problems joint work with Ki-Ahm Lee and Se-Chan Lee

Minhyun Kim

Workshop: Regularity for nonlinear diffusion equations. Green functions and functional inequalities June 16, 2022

Dirichlet problem for the Laplace equation

• Let $\Omega \subset \mathbb{R}^n$ be open and bounded. Given $g \in C(\partial \Omega)$, the Perron's solution

 $u(x) = \sup\{v(x) : v \in C(\overline{\Omega}) \text{ is subharmonic in } \Omega, v \leq g \text{ on } \partial\Omega\}$

solves the Dirichlet problem for Δ .

However, it does not imply

$$\lim_{\Omega \ni x \to x_0} u(x) = g(x_0) \tag{1}$$

for boundary points $x_0 \in \partial \Omega$.

Definition

UNIVERSITÄT

Faculty of Mathematics

A boundary point $x_0 \in \partial \Omega$ is called *regular w.r.t.* Δ if (1) holds $\forall g \in C(\partial \Omega)$.

• (1) is connected to the geometric properties of the boundary through the concept of barrier function.

Examples of regular and irregular boundaries

Two dimensional case

Figure: Regular

n-dimensional case, n > 2

Figure: Regular

Figure: Irregular at 0

Figure: Regular

Figure: Regular

Figure: Irregular at 0

Other sufficient conditions

- Measure density condition: $\inf_{0 < r < r_0} \frac{|B_r(x_0) \setminus \Omega|}{r^n} \ge c$.
- Exterior corkscrew condition, exterior Reifenberg flat condition, ...

Wiener criterion

Faculty of Mathematics

Definition (Capacity)

Let Ω be an open set and $K \subset \Omega$ a compact set. The *capacity of* K *in* Ω is defined by

$$\mathsf{cap}(\mathcal{K},\Omega) = \mathsf{inf}\left\{\int_{\Omega} |
abla v|^2 dx : v \in \mathit{C}^\infty_c(\Omega), v \geq 1 ext{ on } \mathcal{K}
ight\}$$

• Note that $cap(\overline{B_{\rho}}, B_{2\rho}) \sim \rho^{n-2}$.

Theorem (Wiener '24)

A boundary point $x_0 \in \partial \Omega$ is regular w.r.t. Δ if and only if

$$\int_0 \frac{\operatorname{cap}(\overline{B_\rho(x_0)} \setminus \Omega, B_{2\rho}(x_0))}{\rho^{n-2}} \frac{d\rho}{\rho} = +\infty.$$

Theorem (Littman-Stampacchia-Weinberger '63)

A boundary point $x_0 \in \partial \Omega$ is regular w.r.t. Δ if and only if it is regular w.r.t. any uniformly elliptic operator.

Quasilinear elliptic equations

UNIVERSITÄT BIELEFELD Faculty of Mathematics

• Given $g \in W^{1,p}(\Omega)$, there exists a unique weak solution $u \in W^{1,p}(\Omega)$ of

$$Qu := -\operatorname{div} \mathcal{A}(x, \nabla u) = 0$$
 in Ω

with $u - g \in W_0^{1,p}(\Omega)$, where $\mathcal{A}(x,\xi) \cdot \xi \approx |\xi|^p$, $p \in (1,\infty)$.

• In particular, u has a representative that is continuous on Ω .

• A boundary point $x_0 \in \partial \Omega$ is said to be *regular w.r.t.* Q if

$$\lim_{\Omega\ni x\to x_0}u(x)=g(x_0)$$

for all
$$g \in W^{1,p}(\Omega) \cap C(\overline{\Omega}).$$

Theorem (Maz'ya '70, Gariepy–Ziemer '77, Lindqvist–Martio '85, and Kilpeläinen–Malý '94)

A boundary point $x_0\in\partial\Omega$ is regular w.r.t. Q if and only if

$$\int_0 \left(\frac{cap_p(\overline{B_\rho(x_0)} \setminus \Omega, B_{2\rho}(x_0))}{\rho^{n-p}} \right)^{\frac{1}{p-1}} \frac{d\rho}{\rho} = +\infty.$$

 Goal: find a necessary and sufficient condition for a boundary point to be regular w.r.t. a nonlinear nonlocal operator

$$\mathcal{L}u(x) = 2p.v. \int_{\mathbb{R}^n} |u(x) - u(y)|^{p-2} (u(x) - u(y)) k_{s,p}(x,y) dy,$$

where $s \in (0,1)$, $p \in (1,\infty)$, and $k_{s,p}$ is a measurable function satisfying $k_{s,p}(x,y) = k_{s,p}(y,x)$ and

$$\frac{\Lambda^{-1}}{|x-y|^{n+sp}} \leq k_{s,p}(x,y) \leq \frac{\Lambda}{|x-y|^{n+sp}}, \quad \Lambda \geq 1.$$

UNIVERSITÄT

Faculty of Mathematics

Function spaces:

UNIVERSITÄT

BIELEFELD Faculty of Mathematics

$$V^{s,p}(\Omega|\mathbb{R}^n) = \left\{ u : \mathbb{R}^n \to \mathbb{R} : u|_{\Omega} \in L^p(\Omega), \frac{|u(x) - u(y)|}{|x - y|^{n/p + s}} \in L^p(\Omega \times \mathbb{R}^n) \right\},$$
$$W_0^{s,p}(\Omega) = \overline{C_c^{\infty}(\Omega)}^{V^{s,p}(\Omega|\mathbb{R}^n)}.$$

- Let $g \in V^{s,p}(\Omega|\mathbb{R}^n)$. There exists a unique weak solution $u \in V^{s,p}(\Omega|\mathbb{R}^n)$ of $\mathcal{L}u = 0$ in Ω with $u g \in W_0^{s,p}(\Omega)$.
- In particular, u has a representative that is continuous on Ω .

Definition

A boundary point $x_0 \in \partial \Omega$ is said to be *regular w.r.t.* \mathcal{L} if

$$\lim_{\Omega\ni x\to x_0}u(x)=g(x_0)$$

for each $g \in V^{s,p}(\Omega | \mathbb{R}^n) \cap C(\mathbb{R}^n)$.

Faculty of Mathematics

Definition (Capacity)

Let Ω be an open set and $K \subset \Omega$ a compact set. The (s, p)-capacity of K in Ω is defined by

$$\mathsf{cap}_{s,p}(K,\Omega) = \inf \left\{ \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|v(x) - v(y)|^p}{|x - y|^{n + sp}} dy dx : v \in C^\infty_c(\Omega), v \ge 1 \text{ on } K \right\}.$$

Theorem (K.-Lee-Lee, '22)

A boundary point $x_0\in\partial\Omega$ is regular w.r.t. $\mathcal L$ if and only if

$$\int_0 \left(\frac{cap_{s,\rho}(\overline{B_\rho(x_0)} \setminus \Omega, B_{2\rho}(x_0))}{\rho^{n-s\rho}} \right)^{\frac{1}{p-1}} \frac{d\rho}{\rho} = +\infty.$$

• See [Eilertsen '00 and Björn '21] for $\mathcal{L} = (-\Delta)^s$.

Corollary (K.-Lee-Lee, '22)

The regularity of a boundary point depends only on n, s, and p, not on the operator \mathcal{L} itself.

Sufficiency (x_0 irregular \implies Wiener integral $< \infty$)

- View the solution u as an admissible function for $\operatorname{cap}_{s,p}(\overline{B_{\rho}(x_0)} \setminus \Omega, B_{2\rho}(x_0))$.
- Use local boundedness and Weak Harnack inequality up to the boundary.
- \implies Wiener integral is finite.

Necessity (Wiener integral $< \infty \implies x_0$ irregular)

- Consider the \mathcal{L} -potential u_{ρ} of $\overline{B_{\rho}(x_0)} \setminus \Omega$ in $B_{8\rho}(x_0)$.
- If there exists $\rho > 0$ such that $u_{\rho}(x_0) < 1$, then x_0 is irregular.
- Wolff potential estimate $\implies u_{\rho}(x_0) < 1$.

Faculty of Mathematics

Theorem (Local boundedness up to boundary)

Let $p \in (1, n/s]$ and $B_R(x_0) \subset \mathbb{R}^n$. If u is a weak subsolution of $\mathcal{L}u = 0$ in Ω , then

$$\sup_{B_{R/2}(x_0)} u_M^+ \le \delta Tail(u_M^+; x_0, R/2) + C(\delta) \Big(f_{B_R(x_0)}(u_M^+)^p dx \Big)^{1/p}$$

where $M = \sup_{B_R(x_0) \setminus \Omega} u_+$, $u_M^+ = \max\{u, M\}$, and

$$Tail(v; x_0, r) = \left(r^{sp} \int_{\mathbb{R}^n \setminus B_r(x_0)} \frac{|v(y)|^{p-1}}{|y - x_0|^{n+sp}} dy\right)^{\frac{1}{p-1}}.$$

Theorem (Weak Harnack inequality up to boundary)

Let $p \in (1, n/s]$, $t \in (0, \frac{n(p-1)}{n-sp})$ and $B_R(x_0) \subset \mathbb{R}^n$. If u is a weak supersolution of $\mathcal{L}u = 0$ in Ω such that $u \ge 0$ in $B_R(x_0)$, then

$$\left(\int_{B_{R/2}(x_0)} (u_m^-)^t dx\right)^{1/t} \leq C \inf_{B_{R/4}(x_0)} u_m^- + C Tail((u_m^-)_-; x_0, R),$$

where $m = \inf_{B_R(x_0) \setminus \Omega} u$ and $u_m^- = \min\{u, m\}$.

• If x_0 is irregular, then

$$\lim_{\rho \to 0} \sup_{\Omega \cap B_{\rho}(x_0)} u > g(x_0) \quad \text{or} \quad \lim_{\rho \to 0} \inf_{\Omega \cap B_{\rho}(x_0)} u < g(x_0).$$

Assume WLOG

$$L:=\lim_{\rho\to 0}\sup_{\Omega\cap B_{\rho}(x_0)}u>g(x_0)$$

and choose $I \in \mathbb{R}$ such that $L > I > g(x_0)$.

• Find $r_* > 0$ such that $l \ge \sup_{\overline{B_r(x_0)} \setminus \Omega} g$ for any $r \in (0, r_*)$ by continuity of g.

• Consider
$$u_r := M(r) - (u - l)_+$$
, where $M(r) = \sup_{B_r(x_0)} (u - l)_+$.

• Then,
$$(u_r)_m^- = u_r$$
.

• Let
$$ho \in (0, r_*/4)$$
 and $\eta \in \mathsf{cutoff}(\overline{B_{
ho}(x_0)}, B_{2\rho}(x_0))$. Then,
 $\frac{u_{4\rho}\eta}{\overline{M(4\rho)}}$

is admissible for $cap_{s,\rho}(\overline{B_{\rho}(x_0)} \setminus \Omega, B_{2\rho}(x_0)).$

• By the weak Harnack inequality local boundedness up to boundary, we have

$$\int_{0}^{r_{*}/4} \left(\frac{\operatorname{cap}_{s,\rho}(\overline{B_{\rho}(x_{0})} \setminus \Omega, B_{2\rho}(x_{0}))}{\rho^{n-s\rho}} \right)^{\frac{1}{p-1}} \frac{d\rho}{\rho}$$

$$\leq C \int_{0}^{r_{*}/4} \left(\inf_{B_{\rho}} u_{4\rho} + \operatorname{Tail}(u_{4\rho}^{-}; x_{0}, 4\rho) \right) \frac{d\rho}{\rho}$$

$$= C \int_{0}^{r_{*}/4} \left(M(4\rho) - M(\rho) + \operatorname{Tail}(u_{4\rho}^{-}; x_{0}, 4\rho) \right) \frac{d\rho}{\rho}$$

$$\leq C \left(\sup_{B_{4r_{*}}(x_{0})} u + |I| + \operatorname{Tail}(u; x_{0}, r_{*}) \right) < \infty.$$

Definition

Let $\psi \in C_c^{\infty}(\Omega)$ be such that $\psi \equiv 1$ on K. The \mathcal{L} -harmonic function in $\Omega \setminus K$ with $u - \psi \in W_0^{s,p}(\Omega \setminus K)$ is called the \mathcal{L} -potential of K in Ω .

Lemma

Let u_{ρ} be the \mathcal{L} -potential of $\overline{B_{\rho}(x_0)} \setminus \Omega$ in $B_{8\rho}(x_0)$. If there exists $\rho > 0$ such that $u_{\rho}(x_0) = \liminf_{\Omega \ni x \to x_0} u_{\rho}(x) < 1$, then x_0 is irregular.

Necessity (2/4)

Definition

A function $u : \mathbb{R}^n \to (-\infty, +\infty]$ is said to be *L*-superharmonic in Ω if it satisfies the following properties:

- $u < +\infty$ a.e. in \mathbb{R}^n .
- u is lower semicontinuous in Ω .
- for each $\Omega' \Subset \Omega$ and each weak solution $v \in C(\overline{\Omega'})$ of $\mathcal{L}v = 0$ in Ω' with $v_+ \in L^{\infty}(\mathbb{R}^n)$ such that $u \ge v$ on $\partial \Omega'$ and a.e. on $\mathbb{R}^n \setminus \Omega'$, it holds that $u \ge v$ in Ω' .
- $u_- \in L^{p-1}_{sp}(\mathbb{R}^n).$

Theorem (Korvenpää-Kuusi-Palatucci '17)

- If an *L*-superharmonic function is of L[∞]_{loc}(Ω) or W^{s,p}_{loc}(Ω), then it is a weak supersolution.
- If a weak supersolution u is lower semicontinuous in Ω and satisfies $u(x) = \text{ess}\liminf_{y \to x} u(y)$ for all $x \in \Omega$, then u is \mathcal{L} -superharmonic.

Theorem (Wolff potential estimate)

Let $p \in (1, n/s]$. Let u be an \mathcal{L} -superharmonic function in $B_{8\rho}(x_0)$, which is nonnegative in $B_{8\rho}(x_0)$. If $\mu = \mathcal{L}u$ exists, then

$$u(x_0) \leq C\left(\inf_{B_{2\rho}(x_0)} u + \mathbf{W}^{\mu}_{s,\rho}(x_0, 4\rho) + \operatorname{Tail}(u_{\rho}; x_0, 2\rho)\right),$$

where

$$\mathbf{W}_{s,\rho}^{\mu}(x_{0},4r) = \int_{0}^{4r} \left(\frac{\mu(B_{\rho}(x_{0}))}{\rho^{n-s\rho}}\right)^{\frac{1}{p-1}} \frac{d\rho}{\rho}$$

is the Wolff potential of μ .

- When $p > 2 \frac{s}{n}$, it is known for SOLA, see [Kuusi–Mingione–Sire '15].
- The existence of μ for general \mathcal{L} -supreharmonic function is open.
- However, it exists for $u = u_{\rho}$.

Assume that

$$\int_0 \left(\frac{\operatorname{cap}_{s,p}(\overline{B_r(x_0)} \setminus \Omega, B_{2r}(x_0))}{r^{n-sp}} \right)^{\frac{1}{p-1}} \frac{dr}{r} < \infty.$$

• It is enough to find small $\rho > 0$ so that $u(x_0) < 1$. Indeed, we have

$$\begin{split} u_{\rho}(x_{0}) &\leq C\left(\mathbf{W}_{s,\rho}^{\mu}(x_{0},4\rho) + \inf_{B_{2\rho}(x_{0})} u_{\rho} + \mathsf{Tail}(u_{\rho};x_{0},2\rho)\right) \\ &\leq C\int_{0}^{4\rho} \left(\frac{\mathsf{cap}_{s,\rho}(\overline{B_{r}(x_{0})}\setminus\Omega,B_{2r}(x_{0}))}{r^{n-sp}}\right)^{\frac{1}{p-1}}\frac{dr}{r} \\ &+ C\left(\varepsilon^{p} + \varepsilon^{-\frac{p}{p-1}}\frac{\mathsf{cap}_{s,\rho}(\overline{B_{r}(x_{0})}\setminus\Omega,B_{2r}(x_{0}))}{\rho^{n-sp}}\right)^{\frac{1}{p-1}} \end{split}$$

for any $\varepsilon > 0$. Take sufficiently small ε and then send $\rho \rightarrow 0$.

Thank you for your attention!