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The Gross-Pitaevskii equation.

Joint work with J. Dávila, M. del Pino (University of Bath) and Rémy Rodiac

(Universitè d’Orsay).

We consider

i∂tψ + ∆ψ + (1− |ψ|2)ψ = 0, ψ : R× R3 → C. (GP)

 Nonlinear Schrödinger equation with a Ginzburg-Landau potential.

 Bose-Einstein condensate theory, nonlinear optics, superfluidity.

Two conserved quantities:

• The energy: E(ψ) =
1

2

∫
R3

[
|∇ψ|2 +

1

2
(1− |ψ|2)2

]
dx.

• The momentum: P(ψ) =

∫
R3

(iψ,∇ψ)dx.
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Traveling wave solutions.

We are interested in special solutions of the form

ψ(t, x) = u(x1, x2, x3 − Ct), u : R3 → C,

where C ∈ R is a constant  Traveling wave.

If ψ solves (GP) then u satisfies

iC∂x3u = ∆u + (1− |u|2)u in R3. (GP-TW)

Jones-Putterman-Roberts program (’86): existence of finite energy
solutions if and only if C ∈ (0,

√
2)  subsonic range.

 Nonexistence for C >
√

2 and n ≥ 3, and for C ≥
√

2 and n = 2,
[Gravejat ’03, ’04].

 Existence for C ∈ (0,
√

2) and n ≥ 3, [Béthuel-Orlandi-Smets, ’04], [Maris,

’13].

 Existence for almost every C ∈ (0,
√

2) and n = 2,
[Béthuel-Gravejat-Saut, ’09], [Bellazzini-Ruiz, ’20].
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Traveling wave solutions.

Question: Location and dynamics of vortices (the zeroes of the wave
function u).

Let ε > 0 small, and consider C = cε| log ε|, with c ∈ R fixed. Defining
uε(x) = u

(
x
ε

)
, it solves

iε2| log ε|∂x3uε = ε2∆uε + (1− |uε|2)uε in R3.

Motivation: The study of the equation

iε2| log ε|∂tψ + ε2∆ψ + (1− |ψ|2)ψ = 0 in R× Ω.

For initial data concentrating near a 1D-curve then ψ also concentrates
near a 1D curve evolving through the binormal curvature flow

∂tγ = ∂sγ ∧ ∂2
ssγ, (BCF)

[Jerrard, ’02], [Jerrard-Smets, ’18].
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Special solutions of (BCF):

• Stationary straight line  Standard GL vortex of degree 1 in R2.

• Translating circle  Trav. waves with vortex rings [Béthuel-Orlandi-Smets,

’04], [Chiron, ’04], [Lin-Wei-Yang, ’13].

• Translating rotating helix  Trav. waves with helical vortex set [Chiron,

’05].

Goal: to construct solutions with velocity C = cε| log ε| and a special form
in the vortex set.
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Consider the Klein-Majda-Damodaran system

−i∂t fk(t, z)−∂zz fk(t, z)−2
∑
j 6=k

djdk
fk − fj
|fk − fj |2

= 0, k = 1, . . . , n. (KMD)

 Derived in fluid mechanics [Klein-Majda-Damodaran, ’95].

For well-prepared initial data, the vortex set of solutions to (GP)
converges, as ε→ 0, towards n almost parallel filaments solutions to the
(KMD) system [Jerrard-Smets, ’21].

Solutions: for k = 1, . . . , n,

fk(t, z) := d̂e i(z−νt)e
2i(k−1)π

n , with d̂ :=

√
n − 1

1− ν
, ν < 1.

Observation: The curves z 7→ (fk(t, z), z) are helices arranged with
polygonal symmetry.

Question: Can we construct a solution with a vortex set of multiple
helices?
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The Ginzburg-Landau vortex in R2.

The equation

∆w + (1− |w |2)w = 0 in R2, (GL)

has a solution w : R2 → C that can be written as

w(z) = ρ(r)e iθ with ρ(0) = 0, ρ(+∞) = 1.

Observation: This provides a solution in R3 for (GL) and (GP)  vortex
set along a straight line.

Idea: To glue copies of this vortex in an appropriate way to construct the
helices.
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The construction.

Theorem (Dávila-del Pino-M.-Rodiac, ’21)

For each n ≥ 2 and for every −∞ < c < 1, there exists ε0 > 0 such that
for every 0 < ε < ε0 there exists uε which solves (GP-TW) with
C = cε| log ε|. The solution uε can be written as

uε(r , θ, x3) =
n∏

k=1

w
(
re iθ − dεe

iεx3e2ikπ/n
)

+ ϕε

with

‖ϕε‖L∞ ≤
M

| log ε|
for some constant M > 0,

and dε = d̂ε
ε
√
| log ε|

with d̂ε =
√

n−1
1−c + oε(1).

Technique: Lyapunov-Schmidt reduction method.
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Reduction to a 2D equation.

A function u is screw-symmetric if

u(r , θ + h, x3 + h) = u(r , θ, x3)

for any h ∈ R. Equivalently u(r , θ, x3) = u(r , θ − x3, 0) =: U(r , θ − x3).

Observation: ud(r , θ, x3) :=
∏n

k=1 w
(
r
εe

iθ − dεe
ix3e2ikπ/n

)
is not

symmetric, since

ud(r , θ, x3) = e inx3ud(r , θ − x3, 0),

but so it is vd(r , θ, x3) = e−inx3ud(r , θ, x3).

 We look for solutions in the form

u(r , θ, x3) = e inx3U(r , θ − x3),

being U : R+ × R a 2π-periodic function in the second variable.
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Reduction to a 2D equation.

Denoting U = U(r , s) and V (r , s) := U(εr , s) the equation becomes

∆V + ε2(∂2
ssV − 2in∂sV − n2V )− ic| log ε|ε2(inV − ∂sV ) + (1− |V |2)V = 0

in R2.

Observation: It is a perturbation of the (GL) equation.

Approximation:

Vd(z) =
n∏

j=1

w(z − ξj), ξj := dεe
2iπ(j−1)/n, dε :=

d

ε
√
| log ε|

.

Notice that
Vd(z) = Vd(z), Vd(e2iπ/nz) = Vd(z).
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The Lyapunov-Schmidt reduction method.

Let S be a differential operator.

Given an approximation Vd satisfying S(Vd) = oε(1) we want to find V
such that

S(V ) = 0.

If V = Vd + φ, then

0 = S(V ) = S(Vd) + Ld(φ) + N(φ).

E := S(Vd): error term.

Ld(φ): linearized operator of S around Vd .

N(φ): nonlinear term.
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The Lyapunov-Schmidt reduction method.

Step 1: Linear theory. Let ker{Ld} = span{w1, . . . ,wm}.
For any h we solve {

Ld(φ) = h −
∑m

i=1 ci (h)wi ,

φ ⊥ {w1, . . . ,wm},

with
ci (h) = 〈h,wi 〉 and ‖φ‖∗ ≤ C‖h‖∗∗.

Step 2: Fixed point argument. We set h = −E − N(φ) and we obtain a
solution of

S(Vd + φ) =
m∑
i=1

ci (d)wi .

Step 3: Reduction procedure. We choose d so that

ci (d) = 0 ∀ i = 1, . . . ,m.
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Maŕıa Medina de la Torre Helical traveling waves for the GP equation June 13-17, 2022 12 / 20



The Lyapunov-Schmidt reduction method.

Step 1: Linear theory. Let ker{Ld} = span{w1, . . . ,wm}.
For any h we solve {

Ld(φ) = h −
∑m

i=1 ci (h)wi ,

φ ⊥ {w1, . . . ,wm},

with
ci (h) = 〈h,wi 〉 and ‖φ‖∗ ≤ C‖h‖∗∗.

Step 2: Fixed point argument. We set h = −E − N(φ) and we obtain a
solution of

S(Vd + φ) =
m∑
i=1

ci (d)wi .

Step 3: Reduction procedure. We choose d so that

ci (d) = 0 ∀ i = 1, . . . ,m.
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The Lyapunov-Schmidt reduction method.

Key points:

• ker{Ld}  nondegeneracy.

• Linear theory  a priori estimates, norms.

• Good approximation  error size.

• Reduction  size of the projections.
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The linearized Ginzburg-Landau operator.

The linearized operator around the standard vortex w ,

L0(φ) := ∆φ+ (1− |w |2)φ− 2Re(wφ)w ,

has a kernel:
ker(L0) = span{wx1 ,wx2 , iw}.

Observation: Thanks to the symmetries of the construction, we can
consider only wx1 in the projections.

 Only one parameter in the reduction!
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The form of the approximation.

Since the functions are complex-valued, and due to the form of the
non-linear term, we cannot use a perturbation of the form

V = V + φ.

We should use

V = η(Vd + φ) + (1− η)Vde
iψ, φ = iVdψ.

• Additive form close to the vortices.

• Multiplicative form far form the vortices.

 First for the GL equation in [del Pino-Kowalczyk-Musso, ’06].
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Problem in the projections.

For this ansatz we have

‖S(Vd)‖∗∗ ≤
C

| log ε|
and consequently ‖ψ‖∗ ≤

C

| log ε|
.

Thus,

Re

∫
{l1<d}

S(Vd)w̄x1 = ε
√
| log ε|

(a1

d
− a2d

)
+ oε(ε

√
| log ε|),

Re

∫
{l1<d}

N(φ)w̄x1 = O

(
1

| log ε|2

)
,

since

S(Vd) =
d2

| log ε|wx2x2 +
dε√
| log ε|

wx1 + ε
√
| log ε|E0 + O(ε2),

and
wx2x2 ⊥ wx1 !!
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Decomposition in Fourier modes.

Idea: Decompose the error in Fourier modes centered at the vortices, and
separate the odd and the even parts.

Let us call E = S(Vd). We write

E =
∞∑
k=0

E k =
∞∑
k=0

E k
1 (r) cos(kθ) + iE k

2 (r) sin(kθ),

and
E o :=

∑
k odd

E k , E e :=
∑
k even

E k .

Then
‖E o‖∗∗ ≤ Cε

√
| log ε| much more smaller!
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If we write ψ = ψo + ψe , refining the linear theory we may get

|ψo |] ≤ Cε
√
| log ε|,

and

|N(φ)o | ≤ C (‖ψe‖∗|ψo |] + |ψo |2]) ≤
Cε√
| log ε|

.

Therefore

Re

∫
{l1<d}

N(φ)w̄x1 = Re

∫
{l1<d}

N(φ)ow̄x1 = oε(ε
√
| log ε|),

and the adjustment is just

ε
√
| log ε|

(a1

d
− a2d

)
+ oε(ε

√
| log ε|) = 0.
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Open problems.

• Consider another set of solutions of the (KMD) system and understand if
they are related to solutions of (GP)  challenge with the collision
solutions.

• Similar constructions for other equations: Euler and Schrödinger maps
 Single helix in [Dávila-del Pino-Musso-Wei, ’20], [Lin-Wei, ’03].
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Muchas gracias!
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