Interacting helical traveling waves for the Gross-Pitaevskii equation

María Medina de la Torre Universidad Autónoma de Madrid

Regularity for nonlinear diffusion equations. Green functions and functional inequalities (June 13-17, 2022)

María Medina de la Torre

Helical traveling waves for the GP equation

June 13-17, 2022 1 / 20

The Gross-Pitaevskii equation.

Joint work with J. Dávila, M. del Pino (University of Bath) and Rémy Rodiac (Universitè d'Orsay).

We consider

 $i\partial_t \psi + \Delta \psi + (1 - |\psi|^2)\psi = 0, \quad \psi : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{C}.$ (GP)

→ Nonlinear Schrödinger equation with a Ginzburg-Landau potential.
 → Bose-Einstein condensate theory, nonlinear optics, superfluidity.

Two conserved quantities:

• The energy:
$$E(\psi) = \frac{1}{2} \int_{\mathbb{R}^3} \left[|\nabla \psi|^2 + \frac{1}{2} (1 - |\psi|^2)^2 \right] dx$$

• The momentum: $P(\psi) = \int_{\mathbb{R}^3} (i\psi, \nabla \psi) dx.$

・ 同 ト ・ ヨ ト ・ ヨ ト

The Gross-Pitaevskii equation.

Joint work with J. Dávila, M. del Pino (University of Bath) and Rémy Rodiac (Universitè d'Orsay).

We consider

$$i\partial_t \psi + \Delta \psi + (1 - |\psi|^2)\psi = 0, \quad \psi : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{C}.$$
 (GP)

→ Nonlinear Schrödinger equation with a Ginzburg-Landau potential.
 → Bose-Einstein condensate theory, nonlinear optics, superfluidity.

Two conserved quantities:

• The energy:
$$E(\psi) = \frac{1}{2} \int_{\mathbb{R}^3} \left[|\nabla \psi|^2 + \frac{1}{2} (1 - |\psi|^2)^2 \right] dx.$$

• The momentum: $P(\psi) = \int_{\mathbb{R}^3} (i\psi, \nabla\psi) dx.$

We are interested in special solutions of the form

$$\psi(t,x) = u(x_1, x_2, x_3 - Ct), \quad u : \mathbb{R}^3 \to \mathbb{C},$$

where $C \in \mathbb{R}$ is a constant \rightsquigarrow Traveling wave.

If ψ solves (GP) then u satisfies

$iC\partial_{x_3}u = \Delta u + (1 - |u|^2)u$ in \mathbb{R}^3 . (GP-TW)

Jones-Putterman-Roberts program ('86): existence of finite energy solutions if and only if $C \in (0, \sqrt{2}) \rightsquigarrow$ subsonic range.

→ Nonexistence for $C > \sqrt{2}$ and $n \ge 3$, and for $C \ge \sqrt{2}$ and n = 2, [Gravejat '03, '04].

 \rightsquigarrow Existence for $C \in (0, \sqrt{2})$ and $n \ge 3$, [Béthuel-Orlandi-Smets, '04], [Maris, '13].

→→ Existence for almost every $C \in (0, \sqrt{2})$ and n = 2, [Béthuel-Gravejat-Saut, '09], [Bellazzini-Ruiz, '20].

ヘロン 人間 とくほど 人見とし 知

We are interested in special solutions of the form

$$\psi(t,x) = u(x_1, x_2, x_3 - Ct), \quad u : \mathbb{R}^3 \to \mathbb{C},$$

where $C \in \mathbb{R}$ is a constant \rightsquigarrow Traveling wave.

If ψ solves (GP) then u satisfies

$$iC\partial_{x_3}u = \Delta u + (1 - |u|^2)u$$
 in \mathbb{R}^3 . (GP-TW)

Jones-Putterman-Roberts program ('86): existence of finite energy solutions if and only if $C \in (0, \sqrt{2}) \rightsquigarrow$ subsonic range.

 \sim → Nonexistence for $C > \sqrt{2}$ and $n \ge 3$, and for $C \ge \sqrt{2}$ and n = 2, [Gravejat '03, '04].

→ Existence for $C \in (0, \sqrt{2})$ and $n \ge 3$, [Béthuel-Orlandi-Smets, '04], [Maris, '13].

→ Existence for almost every $C \in (0, \sqrt{2})$ and n = 2, [Béthuel-Gravejat-Saut, '09], [Bellazzini-Ruiz, '20].

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

Question: Location and dynamics of vortices (the zeroes of the wave function u).

Let $\varepsilon > 0$ small, and consider $C = c\varepsilon |\log \varepsilon|$, with $c \in \mathbb{R}$ fixed. Defining $u_{\varepsilon}(x) = u\left(\frac{x}{\varepsilon}\right)$, it solves

$$i\varepsilon^2 |\log \varepsilon |\partial_{x_3} u_{\varepsilon} = \varepsilon^2 \Delta u_{\varepsilon} + (1 - |u_{\varepsilon}|^2) u_{\varepsilon} \quad \text{ in } \mathbb{R}^3.$$

Motivation: The study of the equation

$$i\varepsilon^2 |\log \varepsilon |\partial_t \psi + \varepsilon^2 \Delta \psi + (1 - |\psi|^2)\psi = 0$$
 in $\mathbb{R} \times \Omega$.

For initial data *concentrating* near a 1D-curve then ψ also concentrates near a 1D curve evolving through the binormal curvature flow

$$\partial_t \gamma = \partial_s \gamma \wedge \partial_{ss}^2 \gamma, \qquad (\mathsf{BCF})$$

[Jerrard, '02], [Jerrard-Smets, '18].

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Question: Location and dynamics of vortices (the zeroes of the wave function u).

Let $\varepsilon > 0$ small, and consider $C = c\varepsilon |\log \varepsilon|$, with $c \in \mathbb{R}$ fixed. Defining $u_{\varepsilon}(x) = u\left(\frac{x}{\varepsilon}\right)$, it solves

$$iarepsilon^2 |\logarepsilon| \partial_{x_3} u_arepsilon = arepsilon^2 \Delta u_arepsilon + (1 - |u_arepsilon|^2) u_arepsilon ~~{
m in}~ \mathbb{R}^3.$$

Motivation: The study of the equation

$$i\varepsilon^2 |\log \varepsilon |\partial_t \psi + \varepsilon^2 \Delta \psi + (1 - |\psi|^2)\psi = 0 \text{ in } \mathbb{R} imes \Omega.$$

For initial data *concentrating* near a 1D-curve then ψ also concentrates near a 1D curve evolving through the binormal curvature flow

$$\partial_t \gamma = \partial_s \gamma \wedge \partial_{ss}^2 \gamma, \qquad (\mathsf{BCF})$$

[Jerrard, '02], [Jerrard-Smets, '18].

Special solutions of (BCF):

- Stationary straight line \rightsquigarrow Standard GL vortex of degree 1 in \mathbb{R}^2 .
- Translating circle \rightsquigarrow Trav. waves with vortex rings [Béthuel-Orlandi-Smets, '04], [Chiron, '04], [Lin-Wei-Yang, '13].
- Translating rotating helix \rightsquigarrow Trav. waves with helical vortex set [Chiron, '05].

Goal: to construct solutions with velocity $C = c\varepsilon |\log \varepsilon|$ and a special form in the vortex set.

A A

A (1) < A (1) < A (1) </p>

Consider the Klein-Majda-Damodaran system

$$-i\partial_t f_k(t,z) - \partial_{zz} f_k(t,z) - 2\sum_{j \neq k} d_j d_k \frac{f_k - f_j}{|f_k - f_j|^2} = 0, \quad k = 1, \dots, n.$$
 (KMD)

→ Derived in fluid mechanics [Klein-Majda-Damodaran, '95].

For well-prepared initial data, the vortex set of solutions to (GP) converges, as $\varepsilon \to 0$, towards *n* almost parallel filaments solutions to the (KMD) system [Jerrard-Smets, '21].

Solutions: for
$$k = 1, \ldots, n$$
,

$$f_k(t,z) := \hat{d} e^{i(z-\nu t)} e^{rac{2i(k-1)\pi}{n}}, ext{ with } \hat{d} := \sqrt{rac{n-1}{1-
u}}, \quad
u < 1.$$

Observation: The curves $z \mapsto (f_k(t, z), z)$ are helices arranged with polygonal symmetry.

Question: Can we construct a solution with a vortex set of multiple helices?

(人間) トイヨト イヨト ニヨ

Consider the Klein-Majda-Damodaran system

$$-i\partial_t f_k(t,z) - \partial_{zz} f_k(t,z) - 2\sum_{j \neq k} d_j d_k \frac{f_k - f_j}{|f_k - f_j|^2} = 0, \quad k = 1, \dots, n.$$
 (KMD)

→ Derived in fluid mechanics [Klein-Majda-Damodaran, '95].

For well-prepared initial data, the vortex set of solutions to (GP) converges, as $\varepsilon \to 0$, towards *n* almost parallel filaments solutions to the (KMD) system [Jerrard-Smets, '21].

Solutions: for $k = 1, \ldots, n$,

$$f_k(t,z) := \hat{d}e^{i(z-\nu t)}e^{rac{2i(k-1)\pi}{n}}, ext{ with } \hat{d} := \sqrt{rac{n-1}{1-
u}}, \quad
u < 1.$$

Observation: The curves $z \mapsto (f_k(t, z), z)$ are helices arranged with polygonal symmetry.

Question: Can we construct a solution with a vortex set of multiple helices?

Consider the Klein-Majda-Damodaran system

$$-i\partial_t f_k(t,z) - \partial_{zz} f_k(t,z) - 2\sum_{j \neq k} d_j d_k \frac{f_k - f_j}{|f_k - f_j|^2} = 0, \quad k = 1, \dots, n.$$
 (KMD)

→ Derived in fluid mechanics [Klein-Majda-Damodaran, '95].

For well-prepared initial data, the vortex set of solutions to (GP) converges, as $\varepsilon \to 0$, towards *n* almost parallel filaments solutions to the (KMD) system [Jerrard-Smets, '21].

Solutions: for $k = 1, \ldots, n$,

$$f_k(t,z) := \hat{d}e^{i(z-\nu t)}e^{rac{2i(k-1)\pi}{n}}, ext{ with } \hat{d} := \sqrt{rac{n-1}{1-
u}}, \quad
u < 1.$$

Observation: The curves $z \mapsto (f_k(t, z), z)$ are helices arranged with polygonal symmetry.

Question: Can we construct a solution with a vortex set of multiple helices?

The Ginzburg-Landau vortex in \mathbb{R}^2 .

The equation

$$\Delta w + (1 - |w|^2)w = 0 \text{ in } \mathbb{R}^2, \qquad (\mathsf{GL})$$

has a solution $w: \mathbb{R}^2 \to \mathbb{C}$ that can be written as

 $w(z) =
ho(r)e^{i heta}$ with ho(0) = 0, $ho(+\infty) = 1$.

Observation: This provides a solution in \mathbb{R}^3 for (GL) and (GP) \rightsquigarrow vortex set along a straight line.

Idea: To glue copies of this vortex in an appropriate way to construct the helices.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

The Ginzburg-Landau vortex in \mathbb{R}^2 .

The equation

$$\Delta w + (1 - |w|^2)w = 0 \text{ in } \mathbb{R}^2, \qquad (\mathsf{GL})$$

has a solution $w: \mathbb{R}^2 \to \mathbb{C}$ that can be written as

 $w(z) = \rho(r)e^{i\theta}$ with $\rho(0) = 0$, $\rho(+\infty) = 1$.

Observation: This provides a solution in \mathbb{R}^3 for (GL) and (GP) \rightsquigarrow vortex set along a straight line.

Idea: To glue copies of this vortex in an appropriate way to construct the helices.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

The construction.

Theorem (Dávila-del Pino-M.-Rodiac, '21)

For each $n \ge 2$ and for every $-\infty < c < 1$, there exists $\varepsilon 0 > 0$ such that for every $0 < \varepsilon < \varepsilon_0$ there exists u_{ε} which solves (GP-TW) with $C = c\varepsilon |\log \varepsilon|$. The solution u_{ε} can be written as

$$u_{\varepsilon}(r,\theta,x_3) = \prod_{k=1}^{n} w \left(r e^{i\theta} - d_{\varepsilon} e^{i\varepsilon x_3} e^{2ik\pi/n} \right) + \varphi_{\varepsilon}$$

with

$$\|\varphi_{\varepsilon}\|_{L^{\infty}} \leq \frac{M}{|\log \varepsilon|} \text{ for some constant } M > 0,$$

and $d_{\varepsilon} = \frac{\hat{d}_{\varepsilon}}{\varepsilon \sqrt{|\log \varepsilon|}} \text{ with } \hat{d}_{\varepsilon} = \sqrt{\frac{n-1}{1-c}} + o_{\varepsilon}(1).$

Technique: Lyapunov-Schmidt reduction method.

María Medina de la Torre

A function *u* is screw-symmetric if

$$u(r, \theta + h, x_3 + h) = u(r, \theta, x_3)$$

for any $h \in \mathbb{R}$. Equivalently $u(r, \theta, x_3) = u(r, \theta - x_3, 0) =: U(r, \theta - x_3)$.

Observation: $u_d(r, \theta, x_3) := \prod_{k=1}^n w \left(\frac{r}{\varepsilon} e^{i\theta} - d_{\varepsilon} e^{ix_3} e^{2ik\pi/n}\right)$ is not symmetric, since

$$u_d(r,\theta,x_3)=e^{inx_3}u_d(r,\theta-x_3,0),$$

but so it is $v_d(r, \theta, x_3) = e^{-inx_3}u_d(r, \theta, x_3)$.

→ We look for solutions in the form

$$u(r,\theta,x_3)=e^{inx_3}U(r,\theta-x_3),$$

being $U : \mathbb{R}^+ \times \mathbb{R}$ a 2π -periodic function in the second variable.

A function u is screw-symmetric if

$$u(r, \theta + h, x_3 + h) = u(r, \theta, x_3)$$

for any $h \in \mathbb{R}$. Equivalently $u(r, \theta, x_3) = u(r, \theta - x_3, 0) =: U(r, \theta - x_3)$.

Observation: $u_d(r, \theta, x_3) := \prod_{k=1}^n w\left(\frac{r}{\varepsilon}e^{i\theta} - d_{\varepsilon}e^{ix_3}e^{2ik\pi/n}\right)$ is not symmetric, since

$$u_d(r,\theta,x_3)=e^{inx_3}u_d(r,\theta-x_3,0),$$

but so it is $v_d(r, \theta, x_3) = e^{-inx_3}u_d(r, \theta, x_3)$.

 \rightsquigarrow We look for solutions in the form

$$u(r,\theta,x_3)=e^{inx_3}U(r,\theta-x_3),$$

being $U : \mathbb{R}^+ \times \mathbb{R}$ a 2π -periodic function in the second variable.

医静脉 医黄疸 医黄疸 医黄疸

Denoting U = U(r, s) and $V(r, s) := U(\varepsilon r, s)$ the equation becomes $\Delta V + \varepsilon^2 (\partial_{ss}^2 V - 2in\partial_s V - n^2 V) - ic |\log \varepsilon| \varepsilon^2 (inV - \partial_s V) + (1 - |V|^2) V = 0$ in \mathbb{R}^2 .

Observation: It is a perturbation of the (GL) equation.

Approximation:

$$V_d(z) = \prod_{j=1}^n w(z-\xi_j), \quad \xi_j := d_{\varepsilon} e^{2i\pi (j-1)/n}, \quad d_{\varepsilon} := rac{d}{arepsilon \sqrt{|\log arepsilon|}}.$$

Notice that

 $V_d(\overline{z}) = \overline{V_d}(z), \quad V_d(e^{2i\pi/n}z) = V_d(z).$

医静脉 医原体 医原体 医尿道

Denoting U = U(r, s) and $V(r, s) := U(\varepsilon r, s)$ the equation becomes $\Delta V + \varepsilon^2 (\partial_{ss}^2 V - 2in\partial_s V - n^2 V) - ic |\log \varepsilon| \varepsilon^2 (inV - \partial_s V) + (1 - |V|^2) V = 0$ in \mathbb{R}^2 .

Observation: It is a perturbation of the (GL) equation.

Approximation:

$$V_d(z) = \prod_{j=1}^n w(z-\xi_j), \quad \xi_j := d_{\varepsilon} e^{2i\pi(j-1)/n}, \quad d_{\varepsilon} := rac{d}{arepsilon \sqrt{|\log arepsilon|}}.$$

Notice that

$$V_d(\overline{z}) = \overline{V_d}(z), \quad V_d(e^{2i\pi/n}z) = V_d(z).$$

Let S be a differential operator.

Given an approximation V_d satisfying $S(V_d) = o_{\varepsilon}(1)$ we want to find V such that

$$S(V)=0.$$

If $V = V_d + \phi$, then

$$0 = S(V) = S(V_d) + L_d(\phi) + N(\phi).$$

 $E := S(V_d)$: error term. $L_d(\phi)$: linearized operator of S around V_d . $N(\phi)$: nonlinear term.

Step 1: Linear theory. Let $ker\{L_d\} = span\{w_1, \ldots, w_m\}$. For any *h* we solve

$$\begin{cases} L_d(\phi) = h - \sum_{i=1}^m c_i(h) w_i, \\ \phi \perp \{w_1, \dots, w_m\}, \end{cases}$$

with

$$c_i(h) = \langle h, w_i \rangle$$
 and $\|\phi\|_* \leq C \|h\|_{**}$.

Step 2: Fixed point argument. We set $h = -E - N(\phi)$ and we obtain a solution of

$$S(V_d + \phi) = \sum_{i=1}^{m} c_i(d) w_i$$

Step 3: Reduction procedure. We choose d so that

$$c_i(d) = 0 \qquad \forall i = 1, \ldots, m.$$

周 ト イ ヨ ト イ ヨ ト

Step 1: Linear theory. Let $ker\{L_d\} = span\{w_1, \ldots, w_m\}$. For any *h* we solve

$$\begin{cases} L_d(\phi) = h - \sum_{i=1}^m c_i(h) w_i, \\ \phi \perp \{w_1, \dots, w_m\}, \end{cases}$$

with

$$c_i(h) = \langle h, w_i \rangle$$
 and $\|\phi\|_* \leq C \|h\|_{**}$.

Step 2: Fixed point argument. We set $h = -E - N(\phi)$ and we obtain a solution of

$$S(V_d + \phi) = \sum_{i=1}^{m} c_i(d) w_i.$$

Step 3: Reduction procedure. We choose d so that

$$c_i(d) = 0 \qquad \forall i = 1, \ldots, m.$$

Step 1: Linear theory. Let $ker\{L_d\} = span\{w_1, \ldots, w_m\}$. For any *h* we solve

$$\begin{cases} L_d(\phi) = h - \sum_{i=1}^m c_i(h) w_i, \\ \phi \perp \{w_1, \dots, w_m\}, \end{cases}$$

with

$$c_i(h) = \langle h, w_i \rangle$$
 and $\|\phi\|_* \leq C \|h\|_{**}$.

Step 2: Fixed point argument. We set $h = -E - N(\phi)$ and we obtain a solution of

$$S(V_d + \phi) = \sum_{i=1}^m c_i(d) w_i.$$

Step 3: Reduction procedure. We choose *d* so that

$$c_i(d) = 0 \qquad \forall i = 1, \ldots, m.$$

Key points:

- ker{ L_d } \rightsquigarrow nondegeneracy.
- Linear theory \rightsquigarrow a priori estimates, norms.
- \bullet Good approximation \rightsquigarrow error size.
- Reduction \rightsquigarrow size of the projections.

The linearized Ginzburg-Landau operator.

The linearized operator around the standard vortex w,

$$L^{0}(\phi) := \Delta \phi + (1 - |w|^{2})\phi - 2\operatorname{Re}(\overline{w}\phi)w,$$

has a kernel:

$$\ker(L^0) = \operatorname{span}\{w_{x_1}, w_{x_2}, iw\}.$$

Observation: Thanks to the symmetries of the construction, we can consider only w_{x_1} in the projections.

→ Only one parameter in the reduction!

The linearized Ginzburg-Landau operator.

The linearized operator around the standard vortex w,

$$L^0(\phi) := \Delta \phi + (1 - |w|^2)\phi - 2\mathsf{Re}(\overline{w}\phi)w,$$

has a kernel:

$$\ker(L^0) = \operatorname{span}\{w_{x_1}, w_{x_2}, iw\}.$$

Observation: Thanks to the symmetries of the construction, we can consider only w_{x_1} in the projections.

 \rightsquigarrow Only one parameter in the reduction!

The form of the approximation.

Since the functions are complex-valued, and due to the form of the non-linear term, we cannot use a perturbation of the form

$$V = V + \phi.$$

We should use

$$V = \eta (V_d + \phi) + (1 - \eta) V_d e^{i\psi}, \quad \phi = i V_d \psi.$$

- Additive form close to the vortices.
- Multiplicative form far form the vortices.
- → First for the GL equation in [del Pino-Kowalczyk-Musso, '06].

The form of the approximation.

Since the functions are complex-valued, and due to the form of the non-linear term, we cannot use a perturbation of the form

$$V = V + \phi.$$

We should use

$$V = \eta (V_d + \phi) + (1 - \eta) V_d e^{i\psi}, \quad \phi = i V_d \psi.$$

- Additive form close to the vortices.
- Multiplicative form far form the vortices.
- → First for the GL equation in [del Pino-Kowalczyk-Musso, '06].

Problem in the projections.

For this ansatz we have

$$\|S(V_d)\|_{**} \leq rac{C}{|\log arepsilon|} \quad ext{and consequently} \quad \|\psi\|_* \leq rac{C}{|\log arepsilon|}.$$

Thus,

$$\operatorname{Re} \int_{\{h_1 < d\}} S(V_d) \bar{w}_{x_1} = \varepsilon \sqrt{|\log \varepsilon|} \left(\frac{a_1}{d} - a_2 d\right) + o_{\varepsilon} (\varepsilon \sqrt{|\log \varepsilon|}),$$
$$\operatorname{Re} \int_{\{h_1 < d\}} N(\phi) \bar{w}_{x_1} = O\left(\frac{1}{|\log \varepsilon|^2}\right),$$

since

$$S(V_d) = \frac{d^2}{|\log \varepsilon|} w_{x_2 x_2} + \frac{d\varepsilon}{\sqrt{|\log \varepsilon|}} w_{x_1} + \varepsilon \sqrt{|\log \varepsilon|} E_0 + O(\varepsilon^2),$$

and

$$w_{x_2x_2} \perp w_{x_1}!!$$

э

Problem in the projections.

For this ansatz we have

$$\|S(V_d)\|_{**} \leq \frac{C}{|\log \varepsilon|}$$
 and consequently $\|\psi\|_* \leq \frac{C}{|\log \varepsilon|}$.

Thus,

$$\operatorname{Re} \int_{\{l_1 < d\}} S(V_d) \bar{w}_{x_1} = \varepsilon \sqrt{|\log \varepsilon|} \left(\frac{a_1}{d} - a_2 d\right) + o_{\varepsilon} (\varepsilon \sqrt{|\log \varepsilon|}),$$
$$\operatorname{Re} \int_{\{l_1 < d\}} N(\phi) \bar{w}_{x_1} = O\left(\frac{1}{|\log \varepsilon|^2}\right),$$

since

$$S(V_d) = \frac{d^2}{|\log \varepsilon|} w_{x_2 x_2} + \frac{d\varepsilon}{\sqrt{|\log \varepsilon|}} w_{x_1} + \varepsilon \sqrt{|\log \varepsilon|} E_0 + O(\varepsilon^2),$$

and

$$w_{x_2x_2} \perp w_{x_1}!!$$

э

Problem in the projections.

For this ansatz we have

$$\|S(V_d)\|_{**} \leq \frac{C}{|\log \varepsilon|}$$
 and consequently $\|\psi\|_* \leq \frac{C}{|\log \varepsilon|}$.

Thus,

$$\operatorname{Re} \int_{\{l_1 < d\}} S(V_d) \bar{w}_{x_1} = \varepsilon \sqrt{|\log \varepsilon|} \left(\frac{a_1}{d} - a_2 d\right) + o_{\varepsilon} (\varepsilon \sqrt{|\log \varepsilon|}),$$
$$\operatorname{Re} \int_{\{l_1 < d\}} N(\phi) \bar{w}_{x_1} = O\left(\frac{1}{|\log \varepsilon|^2}\right),$$

since

$$S(V_d) = \frac{d^2}{|\log \varepsilon|} w_{x_2 x_2} + \frac{d\varepsilon}{\sqrt{|\log \varepsilon|}} w_{x_1} + \varepsilon \sqrt{|\log \varepsilon|} E_0 + O(\varepsilon^2),$$

and

 $w_{x_2x_2} \perp w_{x_1}!!$

- 4 回 ト 4 ヨ ト 4 ヨ ト

э

Decomposition in Fourier modes.

Idea: Decompose the error in Fourier modes centered at the vortices, and separate the odd and the even parts.

Let us call $E = S(V_d)$. We write

$$E = \sum_{k=0}^{\infty} E^k = \sum_{k=0}^{\infty} E_1^k(r) \cos(k\theta) + iE_2^k(r) \sin(k\theta),$$

and

$$E^{\circ} := \sum_{k \text{ odd}} E^k, \qquad E^e := \sum_{k \text{ even}} E^k.$$

Then

 $\| {\mathcal E}^o \|_{**} \leq C arepsilon \sqrt{|\log arepsilon|} \rightsquigarrow {
m much more smaller}$

周 ト イ ヨ ト イ ヨ ト

Decomposition in Fourier modes.

Idea: Decompose the error in Fourier modes centered at the vortices, and separate the odd and the even parts.

Let us call $E = S(V_d)$. We write

$$E = \sum_{k=0}^{\infty} E^k = \sum_{k=0}^{\infty} E_1^k(r) \cos(k\theta) + iE_2^k(r) \sin(k\theta),$$

and

$$E^{\circ} := \sum_{k \text{ odd}} E^k, \qquad E^e := \sum_{k \text{ even}} E^k.$$

Then

 $\|E^o\|_{**} \leq C \varepsilon \sqrt{|\log \varepsilon|} \rightsquigarrow$ much more smaller!

If we write $\psi = \psi^o + \psi^e$, refining the linear theory we may get $|\psi^o|_\sharp \leq C \varepsilon \sqrt{|\log \varepsilon|},$

and

$$|\mathsf{N}(\phi)^{\circ}| \leq C(\|\psi^{e}\|_{*}|\psi^{\circ}|_{\sharp} + |\psi^{\circ}|_{\sharp}^{2}) \leq \frac{C\varepsilon}{\sqrt{|\log\varepsilon|}}.$$

Therefore

$$\operatorname{Re}\int_{\{l_1 < d\}} N(\phi) \bar{w}_{x_1} = \operatorname{Re}\int_{\{l_1 < d\}} N(\phi)^o \bar{w}_{x_1} = o_{\varepsilon}(\varepsilon \sqrt{|\log \varepsilon|}),$$

and the adjustment is just

$$\varepsilon\sqrt{|\log\varepsilon|}\left(\frac{a_1}{d}-a_2d\right)+o_{\varepsilon}(\varepsilon\sqrt{|\log\varepsilon|})=0.$$

- 本語 医 本 医 医 一 医

If we write $\psi = \psi^o + \psi^e$, refining the linear theory we may get $|\psi^o|_\sharp \leq C \varepsilon \sqrt{|\log \varepsilon|},$

and

$$|N(\phi)^{\circ}| \leq C(\|\psi^{e}\|_{*}|\psi^{\circ}|_{\sharp} + |\psi^{\circ}|_{\sharp}^{2}) \leq \frac{C\varepsilon}{\sqrt{|\log\varepsilon|}}.$$

Therefore

$$\operatorname{Re}\int_{\{l_1 < d\}} N(\phi) \bar{w}_{x_1} = \operatorname{Re}\int_{\{l_1 < d\}} N(\phi)^o \bar{w}_{x_1} = o_{\varepsilon}(\varepsilon \sqrt{|\log \varepsilon|}),$$

and the adjustment is just

$$\varepsilon\sqrt{|\log\varepsilon|}\left(\frac{a_1}{d}-a_2d\right)+o_{\varepsilon}(\varepsilon\sqrt{|\log\varepsilon|})=0.$$

イロト 不得 トイヨト イヨト 二日

- Consider another set of solutions of the (KMD) system and understand if they are related to solutions of (GP) \rightsquigarrow challenge with the collision solutions.
- Similar constructions for other equations: Euler and Schrödinger maps ~> Single helix in [Dávila-del Pino-Musso-Wei, '20], [Lin-Wei, '03].

Muchas gracias!

María Medina de la Torre

Helical traveling waves for the GP equation

June 13-17, 2022 20 / 20

э