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Hamilton-Jacobi-Bellman Equation — introduction

Bellman equations:

ug + sup { f* — b*.Vu — tr[aaaaTDQu]} =0
acA
u(0,z) = uo(x)
Controlled SDE:
dXs = 0% (Xs)dBs + b**(Xs)ds and X;=zx.

Define

u(t, x) :zst;pE[/t f(ozs7X5)ds+uo(XT)]

® The value function u(t,z) would be the solution of dynamic
programming equation which is of Bellman type.

® Terminal condition: u(7,z) = uo(z). (Change of variable ¢t ~ T — ¢, to
initial condition)



Hamilton-Jacobi-Bellman Equation — introduction

We consider the SDE with jump

dXs = 0™ (X,)dB;s + b** (X,)ds +/ n** (Xs—,z)N(ds, dz)
|z|>0
T

Jump length
where E[N(A,[0,1])] = v(A)(Lévy measure).

The value function u(¢, ) would be the solution of Non-local Bellman
equations

ur + sup 3 —f* — b*.Vu — tr[aaaaTDQu] - Io‘[u]} =0,
acA

I%u) = /‘ . (u(t, z) —u(t,z +n%(z,2)) +n%(z, 2).Vu(t, .CE)) v(dz)



Hamilton-Jacobi-Bellman Equation — introduction

® value function of infinite horizon control — Elliptic HJB equations.

u(z) = sup /00 e sf(as, Xs)ds
0

o

solves,

Mu(x) + sup § —f* — b*.Vu — tro®c®" D*u] — T [u]} =0
acA

® Here we will concentrate on purely non-local equation (o = 0).



Hamilton-Jacobi-Bellman Equation — introduction

Typical Assumption:
® wug, 0%, b, n%, f¢ are continuous is t, x, «. And, Lipschitz in ¢, x
uniformly in a.

o fIZI>0 min{1, |2|*} v(dz) < co. eg. v(dz) = % for o € (0,2).

/l\
Fractional Laplacian (—A)7/?

® Order o of fractional operator if % ~ \ZI%’ |z] < 1.

® No uniform ellipticity condition in general unless specified.

The solutions are interpreted in viscosity sense(Not smooth!). Solutions are
Holder continuous of exponent less or equal to one in general.



Monotone Numerical Scheme

Define the approximate equation by Sy (t, z, un, [un]) = 0.
® Monotonicity: % >0 and 8‘9[52] <0
® Consistency: For any smooth functions

1Sn(¢, [¢]) — Ean(¢)| < K(||D"¢[[)o(h).

e L= stability: |jus||z~ < C.

Convergence Result: by Barles and Souganidis(1991). General Result for
fully non-linear equations.
Similar convergence results hold for non-local Bellman and Isaacs equations
as well.



1st order equations: Rate of convergence

ue + F(t, z,u, Du) =0

Result: rate O(At% + h%)
Crandal-Lions, 1981 — F independent of ¢, z, u.
Souganidis, 1984 — General case.

® Method: Doubling of Variable technique - Modification of comparison
principle result.

® Works if F' is not convex. Isaac Eq.

® Does not work for 2nd order equations.



Rate of convergence: 2nd order Bellman equations

ug + sup 3 £ + c%u — b*.Vu — tr[aaaaTDQU]} =0
acA

Method: Shaking the coefficient(Regularization)+Comparison principle +
Lipschitz type bounds on numerical soln!
Available Results:

® Sub-optimal rates without Lipschitz bound on schemes:
® First result by Krylov(1997,2000).
® Improvement on rate by Barles and Jakobsen(2005).
® Best known rate for general case: O(h'/%) by Barles and
Jakobsen(2007).
® Optimal error bound for specific schemes :
® Finite Difference Schemes by Krylov(2005).
® Semi Lagrangian schemes by Barles and Jakobsen(2002).



Rate of convergence: 2nd order Bellman equations

ug + sup 3 £ + c%u — b*.Vu — tr[aaaaTDzu]} =0
acA

Method: Shaking the coefficient(Regularization)4+Comparison principle +
Lipschitz type bounds on numerical soln!
Shaking the coefficient — Argument similar to Jensen’s inequality

Limitation: Not applicable for general non-convex case.



Rate of convergence: Non-convex Case

1D: Degenerate Isaac equations: Jakobsen(2004).
N D: Bellman + Obstacle :

® Jakobsen(2006).
® Bonnans, Maroso, Zidani(2006).

The method close to Bellman case!!

Uniformly elliptic cases: Algebraic rate.
® Caffarelli and Souganidis (2008), Turanova(2015), Krylov(2015).

The method adopts eliptic regularity.(Need: Uniform elipticity assump.)
Hence not applicable for Degenerate case.



Rate of convergence: Non-local Bellman Equation

up + sup{—f* + c“u — b Vu — Z%u]} = 0.
Results:

Chioma, Karlsen and Jakobsen (2008).
Biswas, Karlsen and Jakobsen (2007, 2010).

Method: Non-local adaptation of ”Krylov’s” Shaking the coefficient
technique.

ue + F(t,z,u, Vu,Z[u]) =0 (e.g. Isaacs equations)
T us + sup{—fo"ﬁ + Py — b Wy — Za’ﬁ[u]} =0.

Non-convex w.f
Results:
Biswas, Chowdhury and jakobsen (2019). O(h%)

Method: Adaptation of doubling of variable technique for non-local
equation.



Approximation of Nonlocal operator

T20g)(x) = /‘ _, (bl @) =66 0) — () V(@) va(d2)

+ /|z|>5 (sb(x +n%(2)) — o(t, :c)) Va(dz)

= I$ (¢ (x) + T%°[4)(x).
0

singular term

® STEP 1: Approximate Z§[¢](x) by small diffusion

1

ZElE) ~ w@g D), af =g [ @) vald)

® STEP 2: Approximate small diffusion by monotone difference scheme

(tr(ag D2¢) ~ L1 [])

o i T a$')i ip T — a$)i)| — x
il = 31 P KD i o /0] 2600

i=1




Approximation of Nonlocal operator

in[d](z) = Z wj(z)d(x;), w; >0, Z w; (@
0 jezN jezN

linear /multilinear interpolation

I%°(gl(z) ~ I’ (6] = D (¢ +25) — d(x)) K50y

jezN T

® Consistency Error bound:
IZ°1¢] = (£2n[0] + T ()|

< (8D 0l + 8%~ K D ol + 1 D26l -+ | D)

small diffusion

T

Assuming v symmetric and n* odd

Monotone difference



Our Framework: Nonlocal HJB equation

sup {f"(@) + " (@)u(@) — I°[u)(2)} =0 in RY,

® Non-Degenerate: For every «

(ddL;:na(Z)) — (|Z|fVl+U7CQZ) for 2z near O.

® Strongly-Degenerate: Z are degenerate for every a.

<dua< C

777‘ e for znear 0
z z

0

* Tt is possible to have different degeneracy for different c.

® Weakly-Degenerate: There exists atleast one « such that Z¢ is

nondegenerate.
* More regular solutions than strongly-degenerate, but the equation is

not uniformly elliptic (not classical in general)



Our Framework: Nonlocal HJB equation

sup (@) + " (@)u(@) — I°[u)(2)} =0 in RY,

® Non-Degenerate: For every «

(%’na(z)) — (|Z‘§VI+U,022) for z near 0.

® Strongly-Degenerate: Z¢ are degenerate for every a.

0 W o _C

& S [opre for 2z near0

® Weakly-Degenerate: There exists atleast one « such that Z% is
nondegenerate.
There exists 8 > o — 1 such that f& € ¢4
and [[f%[l1,p < K



Our Framework: Nonlocal HJB equation

sup (@) + " (@)u(@) — I°[u)(2)} =0 in RY,

Regularity of solutions

® Non-Degenerate: For every «

d o C
(%m“(z)) — (MCTI_‘_J,CQZ) for z near 0. ue e
® Strongly-Degenerate: Z@ are degenerate for every a.

dve C .
ogégm for z near 0 u € Lip

® Weakly-Degenerate: There exists atleast one « such that Z is
nondegenerate.
There exists § > o — 1 such that f* € C1° (=) 2y e L™
and |[f*[15 < K



Main Results: Error Estimates
® Monotone Numerical Scheme:

sup { f(z) + c*(2)U(z) — L7 [U)(x) — Z;° [U)(2)} = 0
acA

Theorem (C*-Jakobsen)

(Strongly degenerate Case) Let u be the viscosity solution and uy the solution
of the approximate equation, then there exists a constant C > 0 such that for any
0 < o <2 we have

i—c
lu —up| < Chito,

Theorem (C*-Jakobsen)

(Weakly-degenerate Case) Let u be the viscosity solution and uyp, the solution of
the approzimate equation, then there exists a constant C > 0 such that for any
0 < o <2 we have

4—0c
C h*teo for 0<o<1
|lu —up| < o(4—0) -
Ch 4fe for 1<o<2.



Main Results: Error Estimates

® (Strongly degenerate Case)
(i) For o > 1, the rate decreases as the order o increases.
(ii) The rate approaches % as o — 2~ and 1 as 0 — 01,

® (Weakly degenerate Case)

1
(i) For o > 1, the rate of convergence is always more than O(h2),

(ii) the rate approaches O(h%) when o — 27.

® Wellposedness of approximate solutions:
® Existence of unique solution via Banach fixed point argument
® Monotonicity of scheme => Comparison Principle , if u;, subsolution,
vp, super solution, then uj < vy.



Idea of the Proofs: Strongly degenerate case

® yy is the solution of approximate problem. Let, (p5)5>0 be the standard
mollifier on RY and define Ue,p, = Up * Pe-
® Estimate for convolution

Cllunllo,1

”U’/L - us,h”O < EHDU}LHU andv HDkus,h”O < k-1

® for every «
F¥(x) + c*(z)up(x) — in up(z) — Z (un(z + z3) — un(z )/@a S <.
jezN
® Convolve by pe,
(@) + c*(@)ue,n (@) = I%(ue,pnl(x)
< || Z[ue,n] — (z:g'g e + Iy fue ) ||y + (CK? + K)e
h?21 h?21

1
:c<54—” +h L e +—7+5—07) +(CK?+ K)e := M. 5



Idea of the Proofs: Strongly degenerate case

Up e — %MEJ; is a subsolution of

sup {£%(@) + c*(@)v(z) — I*[v)(2) } = 0

By comparison result up . — % =56 < u ,and hence up, —u < K(e + M, 5)

Similarly, v — up, < K(e + M, 5),

starting with u as solution of the equation + convolution + Consistency
Error bound to show us = u * pe satisfying

£ (@) + e (@) us(@) — L) ue (@) — T [ue) (@) < K (e + Me,5)

we optimize the choice of k,d and € in order to get the results. First by

choosing k? = 62}150 and then € = 5%

. . h
lu — up| < 0(54+5h*3 +6% 1 82n 1ty ?).
2

4
Result follows by choosing § = h3+7 for any o € (0, 2). O



Idea of the Proofs: Weakly degenerate case

Main Goals:

® For viscosity and approximate solution u and uy, ,

(=) %u, Th[un] € L.

® Improved estimates related to regularized u; and uy, ,

|\u§f) —upllo = Ke”



Idea of the Proofs: Weakly degenerate case

Sketch of the proof of (—A)7/?u € L>:

® For simplification take Z%[¢] = a®(—A)?/2y for a® > 0.
define A7 [g](2) = [}, 1., (&(x +2) — 0(2)) ¥rs
® If u, is a solution of

Au(z) + sup {f“(z) —a®A%"[u](z)} =0 (defined pointwise)
aEA

then ||u — urljo < crl=%
® for any € > 0 there exists @ € A such that
Nuup(2) + £ (2) = A AT (@) > —e,
also, Aur(z+y)+ ¥z +y) —a“A% u.(z+y) <0 for anyy
® Subtracting and integrating over |y| > r we get

~Xa®0 AT [uy](2) — a0 ATT[F](2) + a0 AT [ = a® AT [ur]](z)

(Y



Idea of the Proofs: Weakly degenerate case
® —q*0A%"[y,] is a supersolution of

C
Av 4+ sup {—a® AT [fY](z) + a*A%"[v]} = 0. (fX is a subsolution)
acA

® By comparison principle a®0 A% " [u,] < %

® On the other hand,

—a®0 A% [ur] < Aup(x) + sup {f%(z) — a® AT ur](2)} + sup [[f¥[lo + Allurllo
acA acA

® Weak degenerag{y assumption, a®0 > 0, combining two inequalities
A7 [ur]ll < Zag

® Using limiting argument (careful calculation as both operator and function
converging) we get (—A)7/2u € L, O

® for general nonlocal operator involving %, the proof is more involved but
follows.

® Similar estimate holds for approximate solution, Z;"® [uy] € L°°.



Idea of the Proofs: Weakly degenerate case
Another crucial part:

Lemma

Ifve CLBRN) for B € (0,1] and p is a radial function and v() = v * p., then
for any m > 2, there are C' and K, independent of €,

K
[0 —vllo < Ce'Pwll1s and D™ < W\\Uul B

® Follows from
v @) =@ = | [ (v =) = o) =y Vo@)p- () dy

< Cllols [l 20e(0) dy < Clloll e+,

Question: Similar result involving up? ( up Lipschitz and I}?Ouh €L>)

Answer: up, ¢ C11=711 To take specific function as molifier to extract from
regularity structure.



Idea of the Proofs: Weakly degenerate case
o Ko(t,x) :=F! (e_t"|o)(:r) be the fractional heat kernel .
¢ Define the convolution vl€] := v(-) * K (7, -)(z)

U I~("(t, z) smooth and having right properties for our estimate (Ref. Quirds
talk)

Lemma
Assume e >0, 0 > 1, B € (0 —1,1), and v € CLP(RN). Then
0] — w0 < Ce”.
If v € COL(RY), and define €1 = ——. Then
20

D™ o <

C
ot vl and [D™ vl < o161

em—o

® Main challenge is to get precise estimate for ||u£f] —upllo

® For simplicity we again choose T¢[¢] = —a®(—A)?/2[¢] and choose the
approximate operator by ‘power of discrete Laplacian’

(—AnE (@) - (-2)E o(@)| < Cr? (ID*6]lo + 8]0,



Idea of the Proofs: Weakly degenerate case

Lemma
o _2
luf? = wnllo < K (e71(=20) B funlllo + AT [unllo.1)-

Proof.
St is the semigroup corresponding to fractional heat Kernel and ugf] = Seco (up).

IS¢ (un) — Ss(ur)| = |St(v) — Ss(v)| = ‘/: 87‘[51"('0)](17" _ ’/sf(—A)%[Sr(v)]dr
< /St K(||(—Ah)%uh||o + f—zlluhllo,l) dr

2
< K (tll(=2n) Zunllo + <= llunllo.1 ).

5 o

Further, we see
1 1
Suwn) = unl = | [ (untw = s70) = wn(@) ) K7 0) dy| < K7 lunlor
R

20
The result follows by taking t = &% and s = h1-7.



Error Bound: Weakly Degenerate case

® take a mollifier and denote u(®) = u % p.. Use regularity of u and estimates to
get

)\u(s) + sup {fa(w)+aa(7Ah)%u(€)}
acA
< Ke7 + O (D" o + [u?]lo).

® Considering as a subsolution + comparison principle + ||u(®) — u|o < K&

u(z) —up(z) < K(EJ + efi’)

® For the lower bound (precise!) mollify uy, by the ‘fractional heat kernel’

C
u —u < S (7 n2 D% o + Al o).

® We use the estimates ||Dmu£f] llo and ||u£f] —up|lo

wn—u< O +hT7 + sfi (1+ :—32)) =c(eo+h77 + gfi, - ;i,)-

e Choose ¢ = h? to show llun — ullo < KhZ.



Summery:

THANK YOU



	Known results: Rate of convergence

