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Goals

For u : Ω ⊆ Rn → R satisfying

−tr(AD2u) + |Du|γ ∈ Lq(Ω)

what can be said about Hölder regularity of u? (when
γ > 2,A > 0)
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Motivations

Stochastic optimal control and homogenization:
Hamilton-Jacobi

Theory of growth and roughening of surfaces - KPZ,
flame propagation models - Michelson-Sivashinsky

Mean Field Games:−∂tu −∆u+ |Du|γ = f (m(x, t))

∂tm −∆m − div(γ|Du|γ−2Dum) = 0

Maximal regularity: conjectured by P.-L. Lions ∼ ’12-’14 to
hold iff

q > dγ − 1
γ

=: q0
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Gain of regularity

Since −∆u = f − |Du|γ, by Calderón-Zygmund

‖u‖W2,q . ‖ |Du|γ ‖Lq + ‖f ‖Lq

Using Sobolev embeddings,

‖Du‖Lq∗ . ‖u‖W2,q . ‖ |Du|γ ‖Lq + ‖f ‖Lq = ‖Du‖γLγq + ‖f ‖Lq

and
q∗ > γq ⇔ q > d

γ′

Using Gagliardo-Nirenberg,

‖Du‖Lq∗ . ‖u‖θW2,q [u]1−θα .
(
‖Du‖γLγq + ‖f ‖Lq

)θ
[u]1−θα

and
γθ < 1 ⇔ α >

γ − 2
γ − 1
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Scaling

If −∆u+ |Du|γ = f ,
the α-Hölder scaling v(x) = ε−αu(εx) solves

−∆v + ε(α−1)γ+2−α |Dv|γ = ε2−α f (εx)

• Subquadratic case: γ < 2

−∆v = fε + oε(1)|Dv|γ

α-Hölder bounds depending on Lq-norm of f , q > d/2 : [LU].

• Superquadratic case: γ > 2

|Dv|γ = fε + oε(1)∆v

universal α-Hölder bounds : [Dall’Aglio-Porretta] for

α ≤
γ − 2
γ − 1

:= α, q ≤ q0 :=
d
γ′
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Scaling

γ−2
γ−1 -Hölder is “sharp”: u(x) = c|x|

γ−2
γ−1 is a weak sol. of

−∆u+ |Du|γ = 0

• γ > 1, [Lions]
−∆u+ |Du|γ = f

Lipschitz bounds depending on Lq-norm of f , q > d for classical
solutions

• γ > 1, [Capuzzo Dolcetta-Leoni-Porretta]

−tr(A(x)D2u) + |Du|γ = f

Lipschitz bounds depending on W1,∞-norm of f , for viscosity
solutions, A ≥ 0
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Gap in α-Hölder regularity, when f ∈ Lq, γ > 2 and

α ∈

(
γ − 2
γ − 1

, 1
)
, q ∈

(
d
γ′
,d

)

Need a nonperturbative argument

Need the “strength” of nondegenerate diffusion

Need solutions that are better than weak
γ−2
γ−1 -Hölder holds up to the boundary, better estimates may not.

This gap is crucial in the problem of maximal regularity
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Maximal regularity via the Bernstein’s method

joint work with A. Goffi (Padova), for the model problem

−∆u+ |Du|γ = f

Theorem
Let f ∈ C1(Td), γ > 1,

q > dγ − 1
γ

and q > 2,

and u ∈ C3(Td) be a classical periodic solution.
Then, there exists K = K(‖f ‖q, ‖Du‖1, γ,q,d) > 0 such that

‖D2u‖Lq(Td) + ‖ |Du|γ ‖Lq(Td) ≤ K.
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Proof via an (integral) Bernstein method: look at the equation
satisfied by

w = g(|Du|2) ∼ |Du|

on its level sets, i.e. {wk = (w − k)+ ≥ 0}:

−∆wk + γ|Du|γ−2Du · Dwk +
|D2u|2

|Du|
≤ Df · Du

|Du|
.

Equation can be plugged in

|D2u|2 ≥ |∆u|2 = (|Du|γ − f )2

to yield

−∆wk + w2γ−1 ≤ Df · Du
|Du|

+
f 2

|Du|
− wγ−1 |Dwk|.

…
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drawbacks

the proof needs regular solutions

Bernstein needs f ∈ Lq, q > 2
f is assumed to be periodic
handling general x dependencies, e.g.
−tr(A(x)D2u) + H(x,Du), might be painful
the argument may break down for different operators
div form is ok, but nonlocal, parabolic, ... ??

different approach?
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back to Hölder

need to improve the known γ−2γ−1 -Hölder regularity.

A remarkable Liouville theorem

Lemma ([Lions, 85])
Let A0 be a constant, symmetric and positive definite matrix,
h0 > 0, and w ∈ W2,q

loc(R
N), q > d/γ′, solve

−tr
(
A0D2w

)
+ h0|Dw|γ = 0 in Rd.

Then w is constant.

Note: no need of growth/sign conditions on w.
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joint work with G. Verzini, for the problem

−tr(A(x)D2u) + H(x,Du) = f (x)

where
A ∈ C ∩W1,d, H(x,Du) = h(x)|Du|γ + ...

Theorem

Let q > d
γ′
. For every M ≥ 0 there exists C such that if u ∈ W2,q(Ω) is a

strong solution, with ‖f ‖q ≤ M, then

sup
x̄,x

(
dist(x̄, ∂Ω) ∧ dist(x, ∂Ω)

)α−α0 |u(x̄) − u(x)|
|x̄ − x|α

≤ C,

where
α = 2 − N

q
∧ 1 > α0 =

γ − 2
γ − 1

As a straightforward consequence, we obtain a local maximal
regularity result
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Proof. By contradiction, pick a sequence s.t.

−tr
(
A(x)D2un

)
+ H(x,Dun) = fn(x);

‖fn‖q ≤ M;

rn = |x̄n − xn| ,
(
d(x̄n, ∂Ω)

)α−α0 |un(xn)|
rαn
→ +∞ as n→ +∞.

and define

wn(y) :=
1

|un(xn)|
un(x̄n + rny), y ∈ Ωn :=

Ω − x̄n
rn
.

Step 1: d(x̄n,∂Ω)
rn → +∞ , hence Ωn → R

d.
This is a consequence of γ−2

γ−1 -Hölder estimates by [Dall’Aglio-Porretta]
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Step 2: wn solves

−tr
(
An(y)D2wn

)
+ Hn (y,Dwn) = gn(y) in Ωn,

and

Hn (y,Dwn) ∼

 |un(xn)|
r
γ−2
γ−1
n


γ−1

|Dwn|γ, gn
Lq
−→ 0

Step 3: wn is locally bounded in W2,q by an interpolation argument 
compactness.

Step 4: in the limit, w is a nonconstant solution of

−tr
(
A0D2w

)
+ h0|Dw|γ = 0 in Rd,

which is impossible by Liouville.
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the critical case q0 = d
γ′

γ−2
γ−1 -Hölder cannot be improved.

Suitable regularizations / truncations un of c|x|
γ−2
γ−1 satisfy

−∆un + |Dun|γ = fn, ‖fn‖Lq0 ≤ C, ‖ |Dun|γ ‖Lq0 → +∞,

so Maximal regularity does not hold.

Conjecture (work in progress):

|Du|γ remains bounded in Lq whenever
f varies in a set of uniformly Lq integrable functions.

True when γ < 2 .
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Parabolic

∂tu − tr(A(x)D2u) + h(x)|Du|γ = f (x, t).

Hölder estimates by [Cardaliaguet-Silvestre, Stokols-Vasseur], for
“rough” h,A, but “ incompatible” with maximal regularity .

Hölder and maximal regularity for “nice” h,A by [C.-Goffi], under
non sharp conditions on the rhs integrability:

f ∈ Lq, q ≥ q̄>d+ 2
γ′
.

Stationary result is based on

γ−2
γ−1 -Hölder estimates,

Liouville theorem

both missing now.
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∂tu − tr(AD2u) + |Du|γ ∂tu − tr(AD2u) + |Du|γ

scale differently!

[Cardaliaguet-Silvestre] hinges on oscillation estimates:
Q1 be the unit cylinder,

then oscQ2u ≤ (1 − θ)oscQ1u for suitable Q2 ⊂ Q1.

By scaling, Hölder estimates follow. Diffusion is perturbative.
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Our strategy: prove diminish of suitable seminorms, that is, for
Q2 ⊂ Q1,

then ~u�α,Q2 ≤ (1 − θ)~u�α,Q1 where

~u�α ≈ max
 |u(x, t) − u(x̄, t)||x − x̄|α

,

(
|u(x, t) − u(x, t̄)|
|t − t̄| α2

) 2
γ



using from the representation formula

u(x0, 0) = inf
bs
E

∫ τ

0
`|bs|γ

′

+ f (Xs, s)ds+ Ew(Xτ, τ).
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which reads

u(x0, τ) =
"
|b|γ′ρ+

"
fρ+

∫
u(0)ρ(0)

where

−∂tρ −∆ρ+ div(bρ) = 0, b = −γ|Du|γ−2Du, ρ(τ) = δx0 ,

which is the dual equation.

Crucial Lemma:
‖ρ‖L(d+2/γ′)′ .

"
|b|γ′ρ+ 1

+ control of ρ at the boundary of the unit cylinder.

Then, by estimating u(x0 + h, τ) − u(x0, τ), ...

... we can complete the program: Hölder estimates, full maximal
regularity, and Liouville theorem as a byproduct.
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Ongoing work / perspectives

quasilinear equations (p-Laplacian...)

fully nonlinear problems

nonlocal problems

Thank you for your attention !
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