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General mathematical framework: quasilinear system of reaction-diffusion equations
Typical ecological model - prey-predator interactions

Pursuit-evasion models
Chemical signalling

Direct/indirect taxis & pursuit-evasion models
Linearisation at the space-homogeneous steady state and space-time patterns formation

Numerical solutions

Blow-up versus existence of global-in-time solutions

The talk is based on the joint papers with the ERCIM scholar Purnedu Mishra (at present
in Norwegian University of Life Science)

1 Purnedu Mishra, D.W. Repulsive chemotaxis and predator evasion in predator prey models
with diffusion and prey taxis Math. Models. Methods. Appl. Sciences (M3AS) (2022)

2 Purnendu Mishra, D.W, Pursuit-evasion dynamics for Bazykin-type predator-prey model
with indirect predator taxis, J.D.E. (2023)
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Quasilinear parabolic system

@ System of N quasilinear reaction-diffusion equations :
u =V - (Au)Vu) + f(u) inQr:=Qx(0,T),

where u : Q7 +— RY and £ : RV s RY with BC & IC.
@ diffusion matrix (for r # s cross-diffusion terms )

A(u) = [a(u)*ligrs<n

@ Example: the case N = 2

=V - ((a(u)"'Vur + (a(u)* V) + (ur, u),
=V - ((a(u)*'Vur + (a(u)** Vo) + ho(ur , u) .

setting abl = dild s al? = —uw&ld, ,az’1 = xuld, a2 = dyId we obtain
_(d —xUu
a(w) = (&, X" .
with di, d>, x, €& > 0 and finally:

iy = diAu — EV -V + A, w2),
e = hAuy + XV - iV + H(uy, o).
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Quasilinear parabolic system ||

Suppose that :

@ initial conditions u; o € Wl"’(Q), p > n are non-negative functions,
@ (Vuj,v) = 0 where v is the outer normal vector on smooth boundary 9%,
@ ° fi= u,-;’(u) are C°°smooth functions,
@ V - (A(u)Vu) is normally elliptic.
Then there exists Tmax > 0 such that there exists the unique local non-negative classical solution

u defined in Q X (0, Tmax). It satisfies the boundary and initial conditions and
u € (C([0, Tmax) : WHP(2)) N C=(Q % (0, Trmax)))" -

Moreover, if A(u) = [a(u)"*li<r,s<n is @ triangular matrix then either

lim  Ju(t)]|oc = +00 or Tpmax = 0.
t— Tmax

Basic problems are located about the question:

How does the interplay between f(u) and A(u) impact the properties of solutions ?
@ Existence of global classical solutions versus blow-up of solution in finite time

The prototype for the case of single semilinear equation is the Fujita problem (1966)

up=Au+u? in R"x (0,+00). u(-,0)>0.

@ pattern formation - bifurcations from the constant steady state,
@ existence of global-in-time weak solutions.
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The Keller-Segel model of chemotaxis

Patlak (1953) - Keller-Segel model (1972)

W = W(x, t) density of some chemical released by the members of with density N(x, t),
x € Q C R" with smooth boundary

x-chemotactic sensitivity parameter

Nt = DNAN 4+ / — V - (xNV W)

Wi = DwWAW + N — pW
with homogeneous Neumanna boundary condition
(VN,v) =(VW,v) =0, on 99, t>0.

(—) chemoattractant  (+) chemorepellent
Early stages of the fruit body formation in slime mold Dictostelium Discoideum )

For n = 1 -global in time classical solution (Nagai, 1995)

® 6 6 0

For n = 2 - global solution for fn Nodx small enough, otherwise Tpax < co.(Nagai, Senba,
Yosida; 1997, Biler, 1998)
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A typical prey-predator model (O.D.E. case)

N(t)—prey density,
P(t)—predator density

dP

= = bF(N)P — 6P := Rp(N. P),

N _ (1o N F(N)P := Ry(N, P)
— = - =)= =

dt K M

F = F(N)-functional response e.g. -amount of food (prey) consumed per predator per unite
of time, Holling's type Il function:

aN

F=FV) = 0728

a,b>0,
@ The Rosenzweig-MacArthur prey-predator model (1963)
r - growth rate, § - death rate, a-attack rate, Tj- handling time.

For K = oo and T, = 0 we get the Lotka-Volterra model.
b— efficiency of conversion of food into offspring

e For some set of parameters there is a unique globally stable steady state which may lose
stability and limit cycle emerges via the Hopf bifurcation
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Chemical signalling

@ Many chemicals (e.g. pheromones, kairomones) released by animals are used as means of
inter and intraspecific communication - (chemical signaling) and sense of smell is a primary

means by which prey animals detect predators or prey and trigger suitable behavioral
responses .

@ The chemical signal my be released by predator/prey itself (odor of predator or prey) or it
may be released due to damage of prey captured
(e.g. blood in aquatic ecosystems).
@ Let W be a chemical released by prey or predator then the corresponding equation reads
W; = d&sAW + g(N, P) — pW

where g = g(N, P) is the rate of chemical signal production and p is the degradation rate

g(N,P)=~P or g(N,P)=vN org(N,P)=BF(N)P,
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Terminology: Direct/indirect prey taxis and/or

predator taxis

@ direct prey-taxis is a directed movement of predator toward the gradient of prey density,

@ indirect prey-taxis is a directed movement of predator toward the density gradient of a
chemical released by prey,

@ direct repulsive predator taxis is the directed movement of prey in the opposite direction to
the gradient of predator density.

@ indirect repulsive predator taxis is a directed movement of prey in the opposite direction to
the density gradient of a chemical released by predator.

@ pursuit- evasion model includes both direct/indirect prey taxis (pursuit) and repulsive
direct/indirect predator taxis (evasion).

@ In the context of predator-prey models the term indirect taxis was first used for a simplistic
model in J.I. Tello, D.W. (M3AS, 2016).

@ Similar idea was also used in in a different context in K. Fujie, T.Senba, (JDE, 2017)
@ Tao, M. Winkler (J.Eur.Math. Soc., 2017)
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The prey-predator model with prey taxis (direct)

P. = dpAP + bF(N)P — 6P,

N
Ne=dyAN + N (1— 2 ) = F(N)P.
with homogeneous Neumann boundary conditions (no-flux) and initial conditions

on smooth boundary 99,  C R” and initial conditions. (£ > 0)
@ P.Kareiva, G.T. Odel (Am. Naturalist 1987),

@ Prey-taxis was found to stabilize prey-predator interactions, no pattern formation is possible
if (¢ > 0!)-J.M. Lee, T. Hillen and M.A. Lewis (J. Biol. Dyn., 2009)

Global-in-time existence of solutions:

@ n > 1 (with volume filling effect) B. Ainseba, at.al.(NARWA, 2008), Y. Tao (NARWA,
2010)

@ n > 1 (classical sol., for small £ with F(N) bounded) - S. Wu, J.Shi, B.Wu (JDE 2016);
D.Li (DCDS 2021)

@ n < 2 (classical sol.)- H.-Y Jin, Z.Wang (JDE, 2017), T. Xiang (Nonlin Anal, 2018), D. Li
(DCDS, 2021)

@ n < 5 (weak solutions) M. Winkler (JDE, 2017)
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Pursuit-evasion predator-prey model with direct

taxis

P, = dpAP — £V - P VN + Rp(P, N),
Ne = dyAN + xV - N VP + Ry(P, N),

with homogeneous Neumann boundary conditions (no flux)

@ The main part of the system is not upper triangular (full cross diffusion system)

@ Formal stability/instability analysis, travelling waves)- Y. Tyutyunov, L. Titova, R.Arditi
(Math. Mod.. Nat. Phenom., 2007)

Global-in-time existence of solutions

@ n < 3- (class. sol. in a neighbourhood of the constant steady state)
M. Fuest (SIAM J. MAth. Anal, 2020)

@ n =1- ( no restriction on the size of initial data, approximation by 6-th order operators)
Y.Tao, M. Winkler (J.F.A, 2021) , (Nonliner Anal. RWA, 2022)
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Pursuit evasion model - indirect taxis for both prey

and predator

Py = dpAP — XV - (PVU) + Rp(P, N)—6, P,
N = dyAN + €V - (NVW) + Ry(P, N)—r N,
We = dw AW + ayP — p, W,

U = dyAU + auN — pyU,

with homogeneous Neumann boundary conditions (no-flux)

@ The main part of the system is upper triangular
Global-in-time existence of solutions:
@ n < 3 (with x and £ small enough or §; , 1 big enough ) - S. Wu (JMAA, 2022)
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Pursuit -evasion prey-predator model with indirect

repulsive predator taxis and prey taxis

P = DpAP — V - (EPVN) — 6P + bF(N)P,

N
N; = DyAN + V - (x\NVW) + rN (1 - ?) — F(N)P,
W; = DwAW + P — pW.

@ Model B : (x > 0 £ = 0) indirect repulsive predator taxis

@ Model A :(x >0 £ > 0 ) pursuit-evasion model
@ Basic L!(Q) estimate :

4 (/ P(x,t)dx+b/N(x,t)dx) +G (/ P(x, 1.‘)d><-§-b\/N(><7 t)dx) <G
dt Q Q Q Q

where C; and G, are positive constants.
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Global existence in time

Theorem

Suppose that Py, No , Wy € Wl"(Q), r > n are non-negative functions.
For Model A and Model B there exists the unique local non-negative classical solution (N, P, W)
satisfying boundary and initial defined on Q x [0, Thax) such that

(N, P, W) € (C([0, Trmax) : WH(Q)) N C*HE x (0, Trmax)))* -

@ Moreover, Tpax = oo and the solution is uniformly L°° - bounded in the case of
@ Model B (x > 0,6 =0) foralln>1
@ Model A (x > 0,& > 0) in the case of n = 1.

@ P. Mishra, D.W. (Math. Mod. & Methods in Appl. Sc. (M3AS), 2022)
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Linear stability analysis for Model B and Hopf

bifurcation

@ The coexistence steady state to Model B is of form

E=(N,P,W) where W= =P.

==

@ A complex number belongs to the spectrum of the linearization of Model B at E iff it is an
eigenvalue of the following stability matrix :

—D1h; + an ar —xNh;
/Vlj = an1 —Dzhj + ax 0 .
0 as —D3h; + a33

where {hj}j'?’jo denotes the eigenvalues of the Laplace operator —A with homogeneous
Neumann boundary condition and [a; ;] is the Jacobian matrix for O.D.E. case.

an <0, a2<0, an >0, ap<0 ap>0 a3 <0.

@ For any x > 0 considered as a bifurcation parameter: detM; < 0 and trM; < 0 .
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Linear stability analysis for Model B and Hopf

bifurcation

The dispersal equation of stability matrix M; is following

N+ oA+ pPN 4 pP (x) = 0

where
pj(,l) = —tI’Mj = —(311 + axn + 333) + (D1 + Dy + Dg)hj s
= oo + azh;,
Pj(-z) = ai1ax — anzaz + anass + axass
+ hj(—axnD; — asDy — a1 Dy — ap D3 — a1 D3 — azDs)

+ h}(D1Dz + D1 D5 + D> Ds)

= Bo + Buhj + Boh?,
I)Jm(X) = —detM; = —anaxass + apaass

+ hj(axa33 Dy + anaxnDs — anan D3 + anassds)
+ hf(fangle — a3D1D> — a1 D2 Ds) + D1D293hf + xananNhj,
= (Yo +mh; + ’Y2hj? + ’Y3hj§) + x(vahj) = ;3‘1) + ij(.3’2)> 0
}.3’2) . It can be checked that all coefficients
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Linear stability analysis for Model B and Hopf

bifurcation

o E is linearly stable if and only if for each j > 0 matrices M; have eigenvalues with negative
real parts which according to the Routh- HurtW|tz stability crlterlon is equivalent to the

conditions
o >0, o >0,
and Q;: 1)pj(2) — pj(.S)(X) = pj(l)p](g) — pj(,3’1) — ij(.S’z) >0 forallj > 0.
e There exists x > 0 such that
(1) (2 (3,1)
H _ Pj Pj Pj
X = min W(hy) = { ST (1)

JENy i

e and the steady state E is stable if x < XH
If
(k) £ U(he) for j#k

then the minimum is attained for a singe j = jo.
o Since trMj; < 0 and detM;, <O there is one real negative eigenvalue and a pair of conjugate

elgenvalues which cross imaginary axis for x = x/ with the transversality condition being
satisfied.

There exist XH > 0 such that steady state E in model B is locally asymptotically stable if
x < x". Morrover, at x"' a solution periodic in space and time emerges according to the Hopf
bifurcation mechanism.

Q based on result of Amann, 1991
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Numerical solutions of models A and B

@ Non-dimensional Rosenzweig-MacArthur model in the frame of model A

Nt:AN+V-(XNVW)+rN(17N)7i,
(1 +BN)
P = dyAP — V- (€PVN) — 6P + — P

(14 BN)

Wi = dy AW + P — uW |

with non-negative initial and no-flux boundary condition.
@ 1D simulations with the help of MATLAB PDEPE tool (At = 0.01, Ax = 0.1)
@ 2D simulations with the help of FreeFem++ solver (At = 0.01, Ax = Ay = 0.1)

@ Values of model parameters are assumed to be

r=0.25 B=2 c=0.85 a=0.95 &§=0.17, )
pn=05, v=10, d, = 0.0, d, = 0.01. @

@ Unique coexistence steady state E = (0.3333;0.2924; 5.8490) and x" = 6.889.
@ |Initial data : perturbation of the steady state e.g.
_ Jmx _F Jmx - Jmx
N(x,0) = N+0.1cos( i ), P(x,0) = P+0.1cos( i ), W(x,0) = W+cos( IE ))
3
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Model B; convergence to the steady state (1D
simulations)

Figure 1: Model B: Perturbation in model B approaches the constant
steady state E for y < x" with j =1
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Model B; transition of perturbation (1D simulation)

— — —0.5 -
Initial data N(x,0) = N, P(x,0) = P + 0.1~ 52>, W(x,0) = W

Timet

Timet

ppppp

Figure 2: Model B: spatio-temporal patterns for y > x"
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Model A; periodic solutions (1D simulations)

Time t

Figure 3: Model A: space-time patterns in unit domain when
x =5, £ = 0.2 and symmetrical initial data with j = 4.
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Model B; separation regions (2D surface plot)

Gaussian initial data fo_r predator centered in the midfile of the square with constant initial
data for the prey N = N and for the chemical W = W

Y

(c)

Figure 4. Model B (¢ = 0): 2D separation regions for xy = 10 at time step
t = 1500 .
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Model A; spike solution

Gaussian initial data for predator and prey centered in the middle of the square with
constant initial data W for the chemical.

Chemical
s2f22d3

(c)

Figure 5: Model A: 2D simulation result for model A at time t = 10 for
x =05,£=10.0
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Model A; spike solution

Chemical

Figure 6: Model A: numerical indication of blowup at time t = 134 for
model A for y =0.5,&£ = 10.0

23/35



How to modify model A to prevent blow-up?—>

Model C

@ In Model C a minimal modification with respect to model A is made for prevention of
blow-up in finite time.

@ The kinetic part is as in the classical Bazykin model ( 1976).

@ Density-dependent suppression of velocity in predators is interpreted as the result of
interference (kind of regularisation)

P

N: = dyAN 4+ xV - N VW — F(N)P + rN — nN?,
W = dwAW + P — pW |

VN
Py = dpAP — £V - P (7) + bF(N) — 6P7(51Pz7
1+o
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Model C

Theorem

If Py, No , Wo € WHT(Q), r > n are non-negative functions then there exist global in-time,

non-negative classical solution to Model C satisfying boundary and initial condition provided n < 3
and the following restrictions on parameters are satisfied

2(16 +n
o1 > (M%*dW) ;
dw

2 2
X Av | 2x
> = 14
Q rl/((dl\l)2+dw+ W),

2 ((d)* + (dw)* + €% )
dW ’

with Ay =

P.Mishra, D.W., JDE. 361 (2023)391-416 .
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Numerical solutions to Model C

@ Set of parameters

r=2 n=18,a=07 b=09, =2, =001, 6§ =0.1, = 0.15,
4 =0.015, d, =1, d, = 0.1, d,, = 0.05.

For this choice of parameters values the restriction Q holds if and only if 0 > o, := 19.7
For o < o, num. sol. to Model C exhibits finite-time blow-up of solution

For o > o, there is prevention of blow-up (global solutions) .

Initial data: perturbation of the constant steady state
E* = (P*,N*, W*) = (0.741,1.016, 0.74)

Po(x,y) = P* + 50067100((x72A5)2+(y—2.5)2),
No(x, y) = N* +8006—100((x—2.5)2+(y—2.5)2)7

2 2
Wolx,y) = W* + 1006~ 100((x—2.5)+(y—2.5)%)

where (x,y) € 2 =(0,5) x (0,5)
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Figure 7: (a) Approximated blowup solution at time t = 1.5 x 10~* for
o = 0.0 (b) Approximated blowup solution at time t = 2.3 x 10~* for
o = 5.0 subject to initial conditions. It was assumed x = 0.1, £ =30 .
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(a)

(b)

Figure 8: Snapshots for o = 25 at different time steps. (a) t = 13, (b)
t =50
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(a)

<> R ’
(b)
Figure 9: Snapshots for o = 25 at different time steps. (a) t = 100, (b)

t = 500. All other parameter values and initial condition is same as in
figure (7).
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Sketch of proof of the global existence for Model C

There is a local smooth solution defined on [, Trmay) satisfying L*(Q)-bound.
We begin with the N-equation

Ny = dyAN + XV - N VW — F(N)P + rN — n N?
e Using the Gagliardo-Nirenberg inequality and Ll(Q)—bound one proves that for n < 3

sup  |IN(-, t)llk < Cn(k) for any k >1
te[T , Tmax)

provided
sup [IVW(-, 6)ls < Cly -
te[T , Tmax)

Then .
sup  [INC, )VW(, t)lla—e < Cyy

te[T , Tmax

0 Using properties of the heat semigroup we infer that

sup JINC, t)[loe < Civ -
te[T, Tmax)

e Using LP — L9 estimates for analytic semigroups (n < 3) we get

sup  ||[VN(,t)|, < Cy for p< 4
te[T , Tmax)

Next it is easy to deduce by parabolic regularity that

sup I[VP(-, )]le < Cp, sup [[VW(, t)lloe < Cw
tE[T , Tmax) te[T, Tmax)
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Sketch of proof of the global existence for Model C

@ The most complicated part of the proof is to find estimate on ||V W(-, t)||4. To this end we
derive differential inequality

y'(t) + y(t) < Const. for t € [T, Trmax)

where for suitable constants A; and A;

y(t):/|VW\4+/P|VW\2+/N\VW|2+A1/N2+A2/P2.
Q Q Q Q Q

@ We use Bochner's type inequality : For W € C?({2) there holds
Q2VWVAW = AIVW|? — 2|D*W|?
and
@ Mizoguchi-Souplet inequality : for u € C3*(Q) satisfying % = 0 on 9Q and Q there holds
the following pointwise inequality
o|Vul?
7| u] < K\Vu|2 on 9Q
ov

where K depends on the curvature of 9.
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Lemma

Let (P, N, W) be a solution to Model C . Then there exists a constant C > 0 such that for
t € (0, Tmax)-

d 2
= \VW|“+dw/|V<|VW\2)} +4M/\VW|4
Q Q Q

16
<72( +")/|VW|2P2+C.
dw Q
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Corollaries and open questions

@ Chemical signalling may destabilize a space-homogeneous steady state in a prey -predator
model and gives rise to space-time dependent pattern formation.

@ When an O.D.E, model is extended to a P.D.E model with taxis terms some mechanism of
blow-up prevention might be necessary to be built in the model.

@ None of the two taxis mechanisms studied in Model C alone can lead to the blow-up for
n = 2. Their cumulative effect leading to blow-up demands farther investigation.

@ Are there any weak solutions for for Model C when o = 0, weak enough to grasp the

singular solutions?

Thank you.
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The explanation of spiky solution formation

Cumulative effect of prey taxis and indirect predator taxis leads to aggregation .
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