High order adaptive methods for computing exit time of Itô–diffusions

Håkon Hoel and Sankarasubramanian Ragunathan

TMS colloquium on PDEs, NTNU 2024

1 Problem description and applications

2 Numerical schemes for SDE and adaptive timestepping

3 Feynman–Kac PDE

4 Convergence rate and computational cost of methods

5 Numerical example

Problem Description

■ Consider the bounded, open and connected domain D ⊂ ℝ^d and a d-dimensional process:

$$dX(t) = a(X(t)) dt + b(X(t)) dW(t)$$

 $X(0) = x_0 \in D$

 Goal: Efficient numerical for approximations of exit time

$$au \coloneqq \inf \left\{ t \ge \mathsf{0} \mid X(t) \notin D \right\} \land T$$

where T > 0 is given.

Main ideas:

- Small timestep size close to the boundary ∂*D*, larger elsewhere.
- High-order strong Itô–Taylor schemes.

Assumptions

Α

The domain boundary ∂D is C^4 continuous.

Β

Coefficients satisfy a ∈ C³(ℝ^d, ℝ^d) and b ∈ C³(ℝ^d, ℝ^{d×d})
 There exists constants Ĉ_b ≥ ĉ_b > 0 such that

$$\hat{c}_b \, |\xi|^2 \leq \xi^ op ig(b(x) b^ op (x) ig) \xi \leq \widehat{C}_b \, |\xi|^2 \,, \qquad orall (x,\xi) \in \overline{D} imes \mathbb{R}^d$$

Remark

Sufficient: τ is well-defined when a, b uniformly Lipschitz, and $D \in \mathcal{B}(\mathbb{R}^d)$. Additional regularity needed for numerical methods.

Applications: Langevin dynamics

Mean first-passage time between pseudo-stable states x_1 and x_2 for

$$dX(t) = -\nabla U(X(t))dt + dW(t), \qquad au := \inf\{t \ge 0 \mid X(t) = 0\}$$

Application: American put option

- Holder of option has the right (but not the obligation) to sell a stock X(t) at price E > 0 any time between [0, T].
- Price of this option¹:

$$\sup_{\tau:\Omega\to[0,T]} \mathbb{E}[\max(E-X(\tau),0)]$$

¹D. J. Higham, An introduction to financial option valuation: mathematics, stochastics and computation, (Cambridge University Press, 2004), vol. 13.

0.9

Methods for exit times

The Monte Carlo method with Euler-Maruyama

Approximate true exit time by

$$\nu \coloneqq \inf \left\{ t \in [0, T] \mid \overline{X}(t) \notin D \right\} \land T$$

where $\overline{X}(t)$ is a numerical solution of SDE

$$dX(t) = a(X(t))dt + b(X(t))dW$$

Standard method is Euler-Maruyama:

$$\overline{X}(t_{n+1}) = a(\overline{X}(t_n))\Delta t + b(\overline{X}(t_n))\underbrace{(W(t_{n+1}) - W(t_n))}_{\Delta W_n},$$

where $\Delta W_n \stackrel{iid}{\sim} N(0, \Delta t I_d)$.

Extension to continuous time:

$$\overline{X}(t) = \overline{X}(t_n) \quad \forall t \in [t_n, t_{n+1}).$$

Monte Carlo methods for exit times I:

Results for $\overline{X}(t)$ and $\nu(\overline{X}(\cdot))$ computed with the **Euler–Maruyama** using constant step size $\Delta t = h$:

• Weak error²:
$$|\mathbb{E}[\nu - \tau]| = \mathcal{O}(h^{1/2})$$
.
(NB! compare to $|\mathbb{E}[X(T) - \overline{X}(T)]| = \mathcal{O}(h)$.)

• Strong error³:
$$\mathbb{E}\left[|\nu - \tau|\right] = \mathcal{O}(h^{1/2}).$$

 Multilevel Monte Carlo method for approximating mean-exit time⁴ achieves

$$\mathbb{E} |E_{MLMC}[\nu] - \mathbb{E} \tau|^2 = \mathcal{O}(\text{Work}^{-1}\log(\text{Work})^{3/2}),$$

vs single level $\mathbb{E} |E_{MC}[\nu] - \mathbb{E} \tau|^2 = \mathcal{O}(\mathsf{Work}^{-1/2})$

²E. Gobet, Stochastic processes and their applications 87, 167–197 (2000).
 ³B. Bouchard et al., Bernoulli 23, 1631–1662 (2017).
 ⁴M. B. Giles, F. Bernal, SIAM JUQ 6, 1454–1474 (2018).

Monte Carlo methods for exit times II:

- **Main source of error:** The discrete process $\overline{X}(t)$ misses first exit of the true process X(t).
- Correction through boundary shifting: shrink the domain D for discrete problem⁵⁶ by magnitude O(h^{1/2}).

Improves weak convergence rate: $|\mathbb{E}[\nu - \tau]| = \mathcal{O}(h)$

⁵M. Broadie *et al.*, *Mathematical finance* **7**, 325–349 (1997). ⁶E. Gobet, S. Menozzi, *Stochastic processes and their applications* **112**, 201–223 (2004). ¹⁰/38

1 Problem description and applications

2 Numerical schemes for SDE and adaptive timestepping

3 Feynman–Kac PDE

4 Convergence rate and computational cost of methods

5 Numerical example

Strong Itô–Taylor schemes

Itô SDE

$$dX(t) = a(X(t)) dt + b(X(t)) dW(t)$$

Approximation

$$X(t_{n+1}) = X(t_n) + \int_{t_n}^{t_{n+1}} \underbrace{a(X(t))}_{\approx a(X(t_n))} dt + \int_{t_n}^{t_{n+1}} \underbrace{b(X(t))}_{\approx b(X(t_n))} dW(t)$$

motivates Euler–Maruyama scheme (Itô–Taylor strong 1/2)

$$\overline{X}(t_{n+1}) = a(\overline{X}(t_n))\Delta t + b(\overline{X}(t_n))\Delta W_n \quad n \ge 0$$

Strong Itô–Taylor schemes

Itô SDE

$$dX(t) = a(X(t)) dt + b(X(t)) dW(t)$$

Approximation

$$X(t_{n+1}) = X(t_n) + \int_{t_n}^{t_{n+1}} \underbrace{a(X(t))}_{\approx a(X(t_n))} dt + \int_{t_n}^{t_{n+1}} \underbrace{b(X(t))}_{\approx b(X(t_n))} dW(t)$$

Additional correction term:

 $\int_{t_n}^{t_{n+1}} b(X(t)) - b(X(t_n)) \, \mathrm{d}W(t) \approx \int_{t_n}^{t_{n+1}} b'(X(t_n)) b(X(t_n))(W(t) - W(t_n)) \, \mathrm{d}W(t)$

Leads to Milstein scheme (Itô-Taylor strong 1)

$$egin{aligned} \overline{X}(t_{n+1}) &= a(\overline{X}(t_n))\Delta t + b(\overline{X}(t_n))\Delta W_n \ &+ b'(\overline{X}(t_n))b(\overline{X}(t_n))\int_{t_n}^{t_{n+1}}\int_{t_n}^t dW(s)dW(t) \end{aligned}$$

...etc.

Overview numerical method

We simulate the SDE using the order γ strong Itô–Taylor scheme. Notation:

$$\overline{X}(t_{n+1}) = \Psi_{\gamma}(\overline{X}(t_n), \Delta t_n), \qquad n = 0, 1, \dots$$
(1)
$$\overline{X}(0) = x_0$$

- The size of timestep Δt_n = Δt(X(t_n)) is chosen as function of the current state X(t_n).
- We consider $\gamma \in \{1, 1.5\}$, and "strong order γ " implies that

$$\mathbb{E}[\max_{t_n} |\overline{X}(t_n) - X(t_n)|] = \mathcal{O}(h^{\gamma})$$

Continuous time extension of numerical solution:

$$\overline{X}(t) = \overline{X}(t_n), \quad \forall t \in [t_n, t_{n+1})$$

Strong Itô-Taylor schemes - explicit form

If the diffusion mapping b is a diagonal matrix, then ⁷

$$\begin{split} \left(\Psi_{\gamma}(\overline{X}(t_{n}),\Delta t_{n})\right)_{i} &= \overline{X}_{i}(t_{n}) + a(\overline{X}(t_{n}))\Delta t_{n} + b_{ii}(\overline{X}(t_{n}))\Delta W_{n}^{i} + \\ &\qquad \frac{1}{2}\mathcal{L}^{i}b_{ii}(\overline{X}(t_{n}))((\Delta W_{n}^{i})^{2} - \Delta t_{n}) + \frac{1}{2}\mathcal{L}^{0}a_{i}(\overline{X}(t_{n}))\Delta t_{n}^{2} + \\ &\qquad \mathcal{L}^{0}b_{ii}(\overline{X}(t_{n}))(\Delta W_{n}^{i}\Delta t_{n} - \Delta Z_{n}^{i}) + \mathcal{L}^{i}a_{i}(\overline{X}(t_{n}))\Delta Z_{n}^{i} \\ &\qquad + \frac{1}{2}\mathcal{L}^{i}\mathcal{L}^{i}b_{ii}(\overline{X}(t_{n}))\left(\frac{1}{3}(\Delta W_{n}^{i})^{2} - \Delta t_{n}\right)\Delta W_{n}^{i} \end{split}$$

with
$$\mathcal{L}^i = b_{ii}(x)\partial_{x_i}$$
 and $\mathcal{L}^0 = \sum_{i=1}^d a_i\partial_{x_i} + \frac{1}{2}b_{ii}^2\partial_{x_ix_i}$

(Red part): the *Milstein* scheme, (red part) + (blue part): $\gamma = 1.5$. NB! Cost involved in sampling the random variables ($\Delta W_n, \Delta Z_n$) is O(1) where

$$\Delta Z_n^i := \int_{t_n}^{t_{n+1}} \int_{t_n}^{s_2} \mathrm{d} W^i(s_1) \, \mathrm{d} s_2$$

⁷Kloeden and Platen, *Numerical Solution of Stochastic Differential Equations*, 2011

Adaptive time-stepping idea

Step size parameter: h > 0
Critical region parameter: δ > 0

and the Milstein scheme:

$$\Delta t_n := \begin{cases} h, & \text{if } d(\overline{X}(t_n), \partial D) > \delta \\ h^2, & \text{if } d(\overline{X}(t_n), \partial D) \le \delta \end{cases}$$

Adaptive time-stepping idea

- Step size parameter: h > 0
- Critical region parameter: $\delta > 0$
- and the Milstein scheme:

$$\Delta t_n \coloneqq \begin{cases} h, & \text{if } d(\overline{X}(t_n), \partial D) > \delta \\ h^2, & \text{if } d(\overline{X}(t_n), \partial D) \le \delta \end{cases}$$

• Order 1.5 scheme with $\delta_1 > \delta_2 > 0$:

$$\Delta t_n \coloneqq \begin{cases} h, & \text{if } d(\overline{X}(t_n), \partial D) > \delta_1 \\ h^2, & \text{if } d(\overline{X}(t_n), \partial D) \in [\delta_2, \delta_1) \\ h^3, & \text{if } d(\overline{X}(t_n), \partial D) \le \delta_2 \end{cases}$$

Adaptive time-stepping idea

Our goal: Achieve strong convergence rate γ :

$$\mathbb{E}\left[|
u - au|
ight] = \mathcal{O}(h^{\gamma}), \qquad \gamma = 1, 1.5$$

essentially at same asymptotic cost as when using uniform timesteps $\Delta t = h$, namely $\mathcal{O}(h^{-1})$.

Conflict between cost and accuracy: Critical regions(s) must be

- large enough to achieve accuracy goal
- small enough to have low computational cost

Lemma 1 (Exiting domain D using smallest timestep $(\gamma = 1)$)

Given h > 0, define

$$\delta(h) \coloneqq \sqrt{8\widehat{C}_b dh \log(h^{-1})}.$$

Then probability that stepsize is largest at exit time is

$$\mathbb{P}\left(\Delta t(\overline{X}(\nu-))=h\right)=\mathcal{O}(h^1),$$

Proof idea for $\gamma = 1$: An exit of *D* at time t_n with large timestep $\Delta t_n = h$ is contained in event

$$\overline{X}(t_{n+1}) - \overline{X}(t_n)| > \delta$$

Leading order approximation

$$|\overline{X}(t_{n+1}) - \overline{X}(t_n)| = |b(\overline{X}(t_n))\Delta W_n| + \mathcal{O}(h) \lessapprox \sqrt{\widehat{\mathcal{C}}_b}|\Delta W_n|.$$

And $\delta(h)$ chosen sufficiently large to ensure that

$$\mathbb{P}(\sqrt{\widehat{C}_b}|\Delta W_n| > \delta) = \mathcal{O}(h^2).$$

Lemma 1 (Similar exit result for $\gamma = 1.5$ method)

Given h > 0, define size of the two critical regions by

$$\delta_1(h)\coloneqq \sqrt{12\widehat{\mathcal{C}}_b dh\log(h^{-1})} ext{ and } \delta_2(h)\coloneqq \sqrt{16\widehat{\mathcal{C}}_b dh^2\log(h^{-1})} \,.$$

Then probability that stepsize at exit time is not smallest

$$\mathbb{P}\left(\Delta t(\overline{X}(
u-))>h^3
ight)=\mathcal{O}(h^\gamma)$$

This result is helpful for bounding overshoot error

$$\mathbb{E}[d(\overline{X}(
u),\partial D)] \lesssim \mathbb{E}[\sqrt{\Delta t(\overline{X}(
u-))}] \lesssim h^\gamma$$

Overshoot and exit-state error of |X(τ) − X(ν)| relates to exit-time error |τ − ν| through Feynman–Kac PDEs.

1 Problem description and applications

2 Numerical schemes for SDE and adaptive timestepping

3 Feynman–Kac PDE

4 Convergence rate and computational cost of methods

5 Numerical example

Feynman–Kac PDE

Recall that $\tau \coloneqq \inf \{t \ge 0 \mid X(t) \notin D\} \land T$

Definition 2 (Time-adjusted exit time)

is the exit time of the diffusion process X(s) that goes through $(t, x) \in [0, T] \times \mathbb{R}^d$ and with time starting from t:

$$au^{t, imes}\coloneqqig(\infig\{s\geq tig|X(s)
otin D ext{ and }X(t)=xig\}-tig)\wedge(au-t)$$

The mean exit time of the time-adjusted exit is defined as

$$u(t,x) \coloneqq \mathbb{E}\left[\tau^{t,x}\right], \quad \forall (t,x) \in [0,T] \times \overline{D}.$$

Feynman–Kac PDE

Proposition 1 (Gilbarg and Trudinger 2015, Gobet and Menozzi 2010) Given $a, b \in C^3$ and domain D with C^4 boundary, the function $u(t, x) := \mathbb{E} [\tau^{t,x}]$ is the unique solution in $C^{1,2}([0, T] \times D) \cap C([0, T] \times \overline{D})$ of backward PDE $\partial_t u = -a \cdot \nabla u - \frac{1}{2} \operatorname{tr} (bb^\top \nabla^2 u) - 1$ in $(0, T) \times D$, u = 0 on $([0, T] \times \partial D) \cup (\{T\} \times D)$.

And there exists a uniform boundary gradient Lipschitz constant L > 0 such that

$$|u(t,x) - u(t,y)| \le L |x-y|, \quad \forall (t,x,y) \in [0,T] \times D \times \partial D$$

Motivation

1D SDE:
$$dX(s) = a(X)ds + b(X)dW(s)$$
 $s > t$, $X(t) = x$

Let u(t, x) solve backward PDE

$$u_t + a(x)u_x + \frac{b^2(x)}{2}u_{xx} = -1, \qquad u|_{(0,T] \times \partial D} = 0.$$

ltô's rule

$$du(s,X(s)) = (u_t + au_x + \frac{b^2}{2}u_{xx})ds + au_x dW(s) = -ds + au_x dW(s)$$

Motivation

1D SDE:
$$dX(s) = a(X)ds + b(X)dW(s)$$
 $s > t$, $X(t) = x$

Let u(t, x) solve backward PDE

$$u_t + a(x)u_x + \frac{b^2(x)}{2}u_{xx} = -1, \qquad u|_{(0,T] \times \partial D} = 0.$$

ltô's rule

$$\int_t^{\tau} du(s, X(s)) = \int_t^{\tau} (u_t + au_x + \frac{b^2}{2}u_{xx})ds + au_x dW(s) = \int_t^{\tau} -ds + au_x dW(s)$$

$$\implies \underbrace{u(\tau, X(\tau))}_{=0} - \underbrace{u(t, X(t))}_{u(t,x)} = -(\tau - t) + \int_t^\tau a u_x dW(s)$$

$$\implies u(t,x) = \mathbb{E}[\tau - t] = \mathbb{E}[\tau^{x,t}].$$

1 Problem description and applications

2 Numerical schemes for SDE and adaptive timestepping

3 Feynman–Kac PDE

4 Convergence rate and computational cost of methods

5 Numerical example

Tiny-timestep exits of D

Theorem 3 (Strong convergence rate)

Given critical regions of the size(s) given earlier, then for any $\xi > 0$ there exists $\exists C_{\xi} > 0$ s.t.

$$\mathbb{E}\left[|\nu-\tau|\right] \le C_{\xi} h^{\gamma-\xi}, \qquad \gamma \in \{1, 1.5\}$$

Notation:

$$\mathbb{E}\left[|
u- au|
ight]=\mathcal{O}(h^{\gamma-})$$

Proof idea: Split error into two parts:

$$\mathbb{E}\left[\left|\tau-\nu\right|\right] = \mathbb{E}\left[\left|\tau-\nu\right| \mathbb{1}_{\nu < \tau}\right] + \mathbb{E}\left[\left|\tau-\nu\right| \mathbb{1}_{\nu > \tau}\right] \eqqcolon I + II$$

Proof I

For term I,

$$u < au \leq T \implies X(
u) \in D ext{ and } \overline{X}(
u) \in D^{\mathcal{C}}$$

Since numerical sol exits at mesh point $\nu \in \{t_n\}_n$, we can write

$$(\tau - \nu)\mathbb{1}_{\nu < \tau} = \tau^{\nu, X(\nu)}\mathbb{1}_{\nu < \tau}$$

Proof II

Moreover, $\exists y(\omega) \in \partial D$ s.t. $|X(\nu) - y| \leq |X(\nu) - \overline{X}(\nu)|$, and $\tau^{\nu, y} = 0$, $\forall \omega \in \{\nu < \tau\}$ This yields,

$$\begin{split} I &= \mathbb{E}\left[(\tau - \nu)\mathbb{1}_{\nu < \tau}\right] \\ &= \mathbb{E}\left[\tau^{\nu, X(\nu)}\mathbb{1}_{\nu < \tau}\right] \\ &\leq \mathbb{E}\left[\mathbb{E}\left[\tau^{\nu, X(\nu)} - \tau^{\nu, y} \mid \mathcal{F}_{\nu}\right]\mathbb{1}_{\nu < \tau}\right] \\ &= \mathbb{E}\left[(u(\nu, X(\nu)) - u(\nu, y))\mathbb{1}_{\nu < \tau}\right] \\ &\leq L \mathbb{E}\left[|X(\nu) - y|\mathbb{1}_{\nu < \tau}\right] \quad (\text{Boundary Lip Feynm-K}) \\ &\leq L \mathbb{E}\left[|X(\nu) - \overline{X}(\nu)\right] \stackrel{\text{order of scheme}}{=} \mathcal{O}(h^{\gamma}) \end{split}$$

Proof II

Moreover, $\exists y(\omega) \in \partial D$ s.t. $|X(\nu) - y| \leq |X(\nu) - \overline{X}(\nu)|$, and $\tau^{\nu, y} = 0$, $\forall \omega \in \{\nu < \tau\}$ This yields,

$$\begin{split} I &= \mathbb{E}\left[(\tau - \nu)\mathbb{1}_{\nu < \tau}\right] \\ &= \mathbb{E}\left[\tau^{\nu, X(\nu)}\mathbb{1}_{\nu < \tau}\right] \\ &\leq \mathbb{E}\left[\mathbb{E}\left[\tau^{\nu, X(\nu)} - \tau^{\nu, y} \mid \mathcal{F}_{\nu}\right]\mathbb{1}_{\nu < \tau}\right] \\ &= \mathbb{E}\left[(u(\nu, X(\nu)) - u(\nu, y))\mathbb{1}_{\nu < \tau}\right] \\ &\leq L \mathbb{E}\left[|X(\nu) - y|\mathbb{1}_{\nu < \tau}\right] \quad (\text{Boundary Lip Feynm-K}) \\ &\leq L \mathbb{E}\left[|X(\nu) - \overline{X}(\nu)\right] \stackrel{\text{order of scheme}}{=} \mathcal{O}(h^{\gamma}) \end{split}$$

Term *II* relates to overshoot:

$$II = \mathbb{E}\left[|\tau - \nu| \, \mathbb{1}_{\{\nu > \tau\}}\right] \leq C \, \mathbb{E}[d(\overline{X}(\nu), \partial D)] + \mathcal{O}(h^{\gamma - \xi}) = \mathcal{O}(h^{\gamma - \xi}).$$

Adaptive time-stepping: Computational cost

Definition 4 (Cost of numerical realization)

Cost of computing one path $\{\overline{X}(t)\}_{t\in[0,\nu]}$ defined by

$$\mathsf{Cost}(\overline{X}) := \int_0^
u rac{1}{\Delta t(\overline{X}(t))} \, \mathsf{d}t \quad = \ \# \mathsf{timesteps} \ \mathsf{used} \ \mathsf{on} \ [0,
u],$$

where we assume $\text{Cost}(\Psi_{\gamma}(x, \Delta t)) = \mathcal{O}(1)$ for one-step solver.

Theorem 5 (Computational cost)

For both numerical methods $\gamma \in \{1, 1.5\}$ it holds that

$$\mathbb{E}[\mathsf{Cost}(\overline{X})] = \mathcal{O}(h^{-1}\log(h^{-1}))$$

Proof ideas for $\gamma = 1$: I

Events

- $\{\Delta t(\overline{X}(t)) = h\} \cap \{t < \nu\}$ set of paths not in critical region at time t
- $\{\Delta t(\overline{X}(t)) = h^2\} \cap \{t < \nu\}$ in critical region at time t.

$$\mathbb{E}\left[\operatorname{Cost}(\overline{X})\right] = \mathbb{E}\left[\int_{0}^{\nu} \frac{1}{\Delta t(\overline{X}(t))} \, \mathrm{d}t\right]$$
$$= \int_{0}^{T} \frac{\mathbb{E}\left[\mathbbm{1}_{\{t < \nu\} \cap \{\Delta t(\overline{X}(t)) = h\}}\right]}{h} + \frac{\mathbb{E}\left[\mathbbm{1}_{\{t < \nu\} \cap \{\Delta t(\overline{X}(t)) = h^{2}\}}\right]}{h^{2}} \, \mathrm{d}t$$
$$\leq \frac{T}{h} + \frac{1}{h^{2}} \underbrace{\int_{0}^{T} \mathbb{E}\left[\mathbbm{1}_{\{t < \nu\} \cap \{d(\overline{X}(t), \partial D) \le \delta\}}\right] \, \mathrm{d}t}_{\text{occupation time in critical region}}$$

Proof ideas for $\gamma = 1$: II

Occupation time for \overline{X} bounded by larger-set occuption time for X:

$$\int_{0}^{T} \mathbb{E}\left[\mathbb{1}_{\{t < \nu\} \cap \{d(\overline{X}(t), \partial D) \le \delta\}}\right] dt \le \int_{0}^{T} \mathbb{E}\left[\mathbb{1}_{\{t < \tau_{\overline{D}}\} \cap \{d(X(t), \partial \widetilde{D}) \le 2\delta\}}\right] dt$$
$$= \int_{0}^{T} \int_{\widetilde{D}} p(t, x) \mathbb{1}_{d(x, \partial \widetilde{D}) \le 2\delta}(x) dx dt$$

where $\tilde{D} = D \oplus B(0, \delta/2)$ and "density" $p(t, x) = \mathbb{P}(\{X(t) \in dx\} \cap \{t < \tau_{\widetilde{D}}\})/dx$ solves FP equation

$$p_t = -\nabla \cdot (ap) + \frac{1}{2} \nabla \cdot (bb^\top \nabla p) \quad \text{in} \quad (0, T] \times \widetilde{D},$$

$$p = 0 \qquad \qquad \text{on} \quad [0, T] \times \partial \widetilde{D}$$

$$p(0, x) = \delta(x - x_0) \qquad \qquad x \in \widetilde{D} \quad (\text{fixed } x_0 \in D)$$

Proof ideas for $\gamma = 1$: III

Key property: $p(t, \cdot) = 0$ on ∂D and p Lipschitz near boundary implies that $|p(t, x)| \leq L\delta$ inside critical region. Therefore

$$\int_{\widetilde{D}} p(t,x) \mathbb{1}_{d(x,\partial \widetilde{D}) \le 2\delta}(x) \, \mathrm{d}x \le L\delta \int_{\widetilde{D}} \mathbb{1}_{d(x,\partial \widetilde{D}) \le 2\delta} \, \mathrm{d}x$$
$$= \mathcal{O}(\delta^2)$$
$$= \mathcal{O}(h |\log(h)|)$$

Conclusion:

$$\mathbb{E}\left[\operatorname{Cost}(\overline{X})\right] \leq \frac{T}{h} + \frac{1}{h^2} \underbrace{\int_0^T \mathbb{E}\left[\mathbbm{1}_{\{t < \nu\} \cap \{d(\overline{X}(t), \partial D) \leq \delta\}}\right] \mathrm{d}t}_{=\mathcal{O}(h|\log(h)|)}$$
$$= \mathcal{O}(h^{-1}|\log(h)|)$$

1 Problem description and applications

2 Numerical schemes for SDE and adaptive timestepping

3 Feynman–Kac PDE

4 Convergence rate and computational cost of methods

5 Numerical example

Numerical example

Consider the SDE with *linear drift* and *non-linear diffusion* given by $dX_1 = 0.1X_2 dt + 0.25(\cos(X_1) + 3) dW_1$ $dX_2 = 0.1X_1 dt + 0.25(\cos(X_2) + 3) dW_2$

where

$$X(0)=(3,3),$$
 domain $D=B(X(0),3)\subset \mathbb{R}^2,$ and $T=10.$

Seek to verify

 $\mathbb{E}[|\tau - \nu|] = \mathcal{O}(h^{\gamma -}) \text{ and } \mathbb{E}[\operatorname{Cost} \overline{X}] = \mathcal{O}(h^{-1}|\log(h)|)$

Monte Carlo approximation of strong rate:

$$\mathbb{E}\left[\left|\tau-\nu\right|\right] \approx \mathbb{E}_{\mathsf{MC}}\left[\left|\nu_{h}-\nu_{2h}\right|\right]$$

with 10⁷ iid MC samples $\nu_h(\omega)$ and $\nu_{2h}(\omega)$ sharing the same driving noise.

Weak rate reference solution

"Exact" weak rate estimate: $\left|\mathbb{E}\left[\tau-\nu_{h}\right]\right| \approx \left|\mathbb{E}_{\mathsf{MC}}\left[\tau-\nu_{h}\right]\right|$

where pseudo-reference solution $\mathbb{E}[\tau] = \mathbb{E}[\tau^{0,x_0}] = u(0,x_0)$, is obtained by solving Feynman–Kac PDE using **Gridap.jl FEM**⁸.

Figure: FEM solution of $u(0, (x_1, x_2)) = \mathbb{E}[\tau^{0, (x_1, x_2)}])$

⁸F. Verdugo, S. Badia, *Computer physics communications* **276**, 108341 (July 2022).

33 / 38

Conclusion

- Our method improves error rate in $\mathbb{E}[|\tau \nu|] = \mathcal{O}(h^{\gamma})$ from literature 1/2 to $\gamma = 1.5$ at nearly same cost
- Our theoretical efficiency gains hinge on restrictive assumptions:
 - diffisuion b being near-diagonal
 - ∂D being C^4
 - Cost per evaluation of Ψ_{γ} is $\mathcal{O}(1)$

Extension by Sankar:

Multilevel Monte Carlo method

$$\mathbb{E}_{MLMC}[\nu] = \sum_{\ell=1}^{L} \mathbb{E}_{M_{\ell}}[\nu_{h_{\ell}} - \nu_{h_{\ell-1}}] + \mathbb{E}_{M_0}[\nu_{h_0}]$$

Approximating payoff functions dependent on exit state and exit time, i.e. $g(\tau, X_{\tau})$

Extensions I:

- Arbitrary order approximations at near-linear cost: O(h⁻¹ log(h⁻¹)) using strong Itô–Taylor scheme of any order γ > 1.5 (Sankar's PhD thesis for GBM and Wiener processes.)
- Exit times for time-dependent or lower-regularity domains D

Figure: (Gobet and Menozzi, 2010)

Reflected diffusion I

$$dX(t) = a(X)dt + b(X)dW(t) + \nu(X)dL(t)$$
 $t \in [0, T],$

in domain D where L(t) is the local time near ∂D and $\nu : \partial D \to \mathbb{R}^d$ inward pointing normal.

For half-space (0, ∞), $\nu = 1$ and above is limit of splitting method:

$$\hat{X}_{n+1} = a(X_n)\Delta t_n + b(X_n)\Delta W_n$$

and projection onto D:

$$X_{n+1} = \hat{X}_{n+1} + 1 imes \underbrace{\max(0, -\hat{X}_{n+1})}_{pprox \Delta L_n}.$$

Reflected diffusion II

Challenge: For uniform timesteps above method yields

$$\max_{n} \mathbb{E}[|X(t_{n}) - \overline{X}(t_{n})|^{2}] \leq C |\Delta t \log(\Delta t)|^{1/2}$$
 (Slominski 2001)

Ongoing project (M. Giles and J. Meo): Use similar adaptive timestepping ideas to achieve

$$\max_{n} \mathbb{E}[|X(t_{n}) - \overline{X}(t_{n})|^{2}] \leq C|\Delta t \log(\Delta t)|$$

for application in multilevel Monte Carlo.

Connection to PDE: $u(t,x) = \mathbb{E}[g(X^{t,x}(T))]$ solves

$$\partial_t u = -a \cdot \nabla u - \frac{1}{2} \operatorname{tr} \left(b b^\top \nabla^2 u \right)$$
 on $(0, T) \times D$

$$\nu \cdot \nabla u = 0 \qquad \text{on} \qquad [0, T] \times \partial D$$

 $u(T, x) = g(x) \qquad \text{on} \qquad D$

- H. Hoel, S. Ragunathan, Ima journal of numerical analysis, drad077 (2023)
- E. Gobet, S. Menozzi, Stochastic processes and their applications 120, 130–162 (2010)
- E. Weinan *et al.*, *Applied stochastic analysis*, (American Mathematical Soc., 2021), vol. 199

Thank you for listening!