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Problem Description

Consider the bounded, open and connected domain D ⊂ Rd and a
d-dimensional process:

dX (t) = a(X (t)) dt + b(X (t)) dW (t)

X (0) = x0 ∈ D

Goal: Efficient numerical for
approximations of exit time

τ := inf
{
t ≥ 0

∣∣ X (t) /∈ D
}
∧ T

where T > 0 is given.

Main ideas:
1 Small timestep size close to the

boundary ∂D, larger elsewhere.
2 High-order strong Itô–Taylor

schemes.

X(0) = x0

Domain, D

Boundary, ∂D

X(t)

X(τ)

3 / 38



Assumptions

A

The domain boundary ∂D is C4 continuous.

B

1 Coefficients satisfy a ∈ C3(Rd ,Rd) and b ∈ C3(Rd ,Rd×d)

2 There exists constants Ĉb ≥ ĉb > 0 such that

ĉb |ξ|2 ≤ ξ⊤
(
b(x)b⊤(x)

)
ξ ≤ Ĉb |ξ|2 , ∀(x , ξ) ∈ D × Rd

Remark

Sufficient: τ is well-defined when a, b uniformly Lipschitz, and D ∈ B(Rd).

Additional regularity needed for numerical methods.
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Applications: Langevin dynamics

Mean first-passage time between pseudo-stable states x1 and x2 for

dX (t) = −∇U(X (t))dt + dW (t), τ := inf{t ≥ 0 | X (t) = 0}

Potential function
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Application: American put option

Holder of option has the right (but not the obligation) to sell a stock
X (t) at price E > 0 any time between [0,T ].

Price of this option1:

sup
τ :Ω→[0,T ]

E[max(E − X (τ), 0)]

Under some assumptions, there exists
(Dt)t∈[0,T ] ⊂ R s.t.

τ(ω) = inf{t ∈ [0,T ] | X (t) /∈ Dt} .

18.5 Optimal exercise boundary 179
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Exercise

Do not exercise

Fig. 18.4. Exercise boundary for an American put. Computed via the binomial
method.

Exercise 18.2 asks you to go half-way towards proving this, by establishing −1 as
a lower bound.

In Figure 18.4 we explicitly compute the optimal exercise boundary S!(t) for
the same E , r , σ and T as used in Figure 18.3. The boundary is shown as a solid
curve – below this curve it is optimal to exercise and above this curve it is op-
timal to hold on. At t = T/4 we have S!(t) = 7.3, which agrees with the point
on the horizontal axis in Figure 18.3 where PAm(S, T/4) leaves the hockey stick.
We tracked the optimal exercise boundary by applying the binomial method with a
range of initial asset prices, S0. At each time point, ti , we defined S!(ti ) to be
the smallest value of Si

n over all binomial trees for which the e−rδt (pV i+1
n+1 +

(1 − p)V i+1
n ) term in (18.7) dominated the $(Si

n) term. In other words, S!(ti )
was taken to be the smallest Si

n for which the binomial method chose not to
exercise.

It can be shown that Figure 18.4 is generic in the sense that

(i) S!(T ) = E ,
(ii) S!(t) is a well-defined, single-valued function of t ,

(iii) S!(t) is a nondecreasing function of t .

Exercise 18.3 deals with points (i) and (iii).
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1D. J. Higham, An introduction to financial option valuation: mathematics,
stochastics and computation, (Cambridge University Press, 2004), vol. 13.
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Methods for exit times

Methoods

Feynman–Kac PDE

Computationally ex-
pensive as dimension d
increases

Monte Carlo methods

Scales well with dimen-
sion d (Method of
choice)

Walk on spheres

Needs good approxima-
tion of sphere hitting dis-
tributions of SDE.
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The Monte Carlo method with Euler–Maruyama

Approximate true exit time by

ν := inf
{
t ∈ [0,T ]

∣∣ X (t) /∈ D
}
∧ T

where X (t) is a numerical solution of SDE

dX (t) = a(X (t))dt + b(X (t))dW

Standard method is Euler–Maruyama:

X (tn+1) = a(X (tn))∆t + b(X (tn)) (W (tn+1)−W (tn))︸ ︷︷ ︸
∆Wn

,

where ∆Wn
iid∼ N(0,∆t Id).

Extension to continuous time: X (t) = X (tn) ∀t ∈ [tn, tn+1).
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Monte Carlo methods for exit times I:

Results for X (t) and ν(X (·)) computed with the Euler–Maruyama using
constant step size ∆t = h:

Weak error2:
∣∣E [

ν − τ
]∣∣ = O(h1/2).

(NB! compare to
∣∣E [

X (T )− X (T )
]∣∣ = O(h).)

Strong error3: E
[
|ν − τ |

]
= O(h1/2).

Multilevel Monte Carlo method for approximating mean-exit time4

achieves

E |EMLMC [ν]− E τ |2 = O(Work−1log(Work)3/2),

vs single level E |EMC [ν]− E τ |2 = O(Work−1/2)
2E. Gobet, Stochastic processes and their applications 87, 167–197 (2000).
3B. Bouchard et al., Bernoulli 23, 1631–1662 (2017).
4M. B. Giles, F. Bernal, SIAM JUQ 6, 1454–1474 (2018).
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Monte Carlo methods for exit times II:

Main source of error: The discrete process X (t) misses first exit of
the true process X (t).

Correction through boundary shifting: shrink the domain D for
discrete problem56 by magnitude O(h1/2).

Improves weak convergence rate: |E[ν − τ ]| = O(h)
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5M. Broadie et al., Mathematical finance 7, 325–349 (1997).
6E. Gobet, S. Menozzi, Stochastic processes and their applications 112, 201–223
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Strong Itô–Taylor schemes

Itô SDE
dX (t) = a(X (t)) dt + b(X (t)) dW (t)

Approximation

X (tn+1) = X (tn) +

∫ tn+1

tn

a(X (t))︸ ︷︷ ︸
≈a(X (tn))

dt +

∫ tn+1

tn

b(X (t))︸ ︷︷ ︸
≈b(X (tn))

dW (t)

motivates Euler–Maruyama scheme (Itô–Taylor strong 1/2)

X (tn+1) = a(X (tn))∆t + b(X (tn))∆Wn n ≥ 0
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Strong Itô–Taylor schemes

Itô SDE
dX (t) = a(X (t)) dt + b(X (t)) dW (t)

Approximation

X (tn+1) = X (tn) +

∫ tn+1

tn

a(X (t))︸ ︷︷ ︸
≈a(X (tn))

dt +

∫ tn+1

tn

b(X (t))︸ ︷︷ ︸
≈b(X (tn))

dW (t)

Additional correction term:∫ tn+1

tn

b(X (t))−b(X (tn)) dW (t) ≈
∫ tn+1

tn

b′(X (tn))b(X (tn))(W (t)−W (tn)) dW (t)

Leads to Milstein scheme (Itô–Taylor strong 1)

X (tn+1) = a(X (tn))∆t + b(X (tn))∆Wn

+ b′(X (tn))b(X (tn))

∫ tn+1

tn

∫ t

tn

dW (s)dW (t)

. . . etc.
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Overview numerical method

We simulate the SDE using the order γ strong Itô–Taylor scheme.
Notation:

X (tn+1) = Ψγ

(
X (tn),∆tn

)
, n = 0, 1, . . . (1)

X (0) = x0

The size of timestep ∆tn = ∆t
(
X (tn)

)
is chosen as function of the

current state X (tn).

We consider γ ∈ {1, 1.5}, and ”strong order γ” implies that

E[max
tn

|X (tn)− X (tn)|] = O(hγ)

Continuous time extension of numerical solution:

X (t) = X (tn), ∀t ∈ [tn, tn+1)
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Strong Itô–Taylor schemes – explicit form

If the diffusion mapping b is a diagonal matrix, then 7(
Ψγ(X (tn),∆tn)

)
i
= X i (tn) + a(X (tn))∆tn + bii (X (tn))∆W i

n+

1

2
Libii (X (tn))

(
(∆W i

n)
2 −∆tn

)
+
1

2
L0ai (X (tn))∆t2n+

L0bii (X (tn))
(
∆W i

n∆tn −∆Z i
n

)
+ Liai (X (tn))∆Z i

n

+
1

2
LiLibii (X (tn))

(1
3
(∆W i

n)
2 −∆tn

)
∆W i

n

with Li = bii (x)∂xi and L0 =
d∑

i=1

ai∂xi +
1

2
b2ii∂xixi

(Red part): the Milstein scheme, (red part) + (blue part): γ = 1.5.

NB! Cost involved in sampling the random variables (∆Wn,∆Zn) is O(1)
where

∆Z i
n :=

∫ tn+1

tn

∫ s2

tn

dW i (s1) ds2

7Kloeden and Platen, Numerical Solution of Stochastic Differential Equations, 2011
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Adaptive time-stepping idea

Step size parameter: h > 0
Critical region parameter: δ > 0

and the Milstein scheme:

∆tn :=

{
h, if d

(
X (tn), ∂D

)
> δ

h2, if d
(
X (tn), ∂D

)
≤ δ
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Adaptive time-stepping idea

Step size parameter: h > 0
Critical region parameter: δ > 0

and the Milstein scheme:

∆tn :=

{
h, if d

(
X (tn), ∂D

)
> δ

h2, if d
(
X (tn), ∂D

)
≤ δ

Order 1.5 scheme with
δ1 > δ2 > 0:

∆tn :=


h, if d

(
X (tn), ∂D

)
> δ1

h2, if d
(
X (tn), ∂D

)
∈ [δ2, δ1)

h3, if d
(
X (tn), ∂D

)
≤ δ2
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Adaptive time-stepping idea

Our goal: Achieve strong convergence rate γ:

E
[
|ν − τ |

]
= O(hγ), γ = 1, 1.5

essentially at same asymptotic cost as when using uniform timesteps
∆t = h, namely O(h−1).

Conflict between cost and accuracy: Critical regions(s) must be

large enough to achieve accuracy goal
small enough to have low computational cost
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Lemma 1 (Exiting domain D using smallest timestep (γ = 1))

Given h > 0, define

δ(h) :=

√
8Ĉbdh log(h−1).

Then probability that stepsize is largest at exit time is

P
(
∆t(X (ν−)) = h

)
= O(h1),

Proof idea for γ = 1: An exit of D at time tn with large timestep ∆tn = h
is contained in event

|X (tn+1)− X (tn)| > δ

Leading order approximation

|X (tn+1)− X (tn)| = |b(X (tn))∆Wn|+O(h) ⪅
√

Ĉb|∆Wn|.
And δ(h) chosen sufficently large to ensure that

P(
√
Ĉb|∆Wn| > δ) = O(h2).
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Lemma 1 (Similar exit result for γ = 1.5 method)

Given h > 0, define size of the two critical regions by

δ1(h) :=

√
12Ĉbdh log(h−1) and δ2(h) :=

√
16Ĉbdh2 log(h−1) .

Then probability that stepsize at exit time is not smallest

P
(
∆t(X (ν−)) > h3

)
= O(hγ)

This result is helpful for bounding overshoot error

E[d(X (ν), ∂D)] ≲ E[
√

∆t(X (ν−))] ≲ hγ

Overshoot and exit-state error of |X (τ)− X (ν)| relates to exit-time
error |τ − ν| through Feynman–Kac PDEs.
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Feynman–Kac PDE

Recall that τ := inf
{
t ≥ 0

∣∣ X (t) /∈ D
}
∧ T

Definition 2 (Time-adjusted exit time)

is the exit time of the diffusion process X (s) that goes through
(t, x) ∈ [0,T ]× Rd and with time starting from t:

τ t,x :=
(
inf

{
s ≥ t

∣∣ X (s) /∈ D and X (t) = x
}
− t

)
∧ (T − t)

The mean exit time of the time-adjusted exit is defined as

u(t, x) := E
[
τ t,x

]
, ∀(t, x) ∈ [0,T ]× D.
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Feynman–Kac PDE

Proposition 1 (Gilbarg and Trudinger 2015, Gobet and Menozzi 2010)

Given a, b ∈ C 3 and domain D with C 4 boundary, the function
u(t, x) := E

[
τ t,x

]
is the unique solution in

C1,2
(
[0,T ]× D

)
∩ C

(
[0,T ]× D

)
of backward PDE

∂tu = −a · ∇u − 1

2
tr
(
bb⊤∇2u

)
− 1 in (0,T )× D,

u = 0 on
(
[0,T ]× ∂D

)
∪ ({T} × D).

And there exists a uniform boundary gradient Lipschitz constant L > 0
such that

|u(t, x)− u(t, y)| ≤ L |x − y | , ∀(t, x , y) ∈ [0,T ]× D × ∂D
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Motivation

1D SDE: dX (s) = a(X )ds + b(X )dW (s) s > t, X (t) = x

Let u(t, x) solve backward PDE

ut + a(x)ux +
b2(x)

2
uxx = −1, u|(0,T ]×∂D = 0.

Itô’s rule

du(s,X (s)) = (ut + aux +
b2

2
uxx)ds + auxdW (s) = −ds + auxdW (s)
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Motivation

1D SDE: dX (s) = a(X )ds + b(X )dW (s) s > t, X (t) = x

Let u(t, x) solve backward PDE

ut + a(x)ux +
b2(x)

2
uxx = −1, u|(0,T ]×∂D = 0.

Itô’s rule∫ τ

t
du(s,X (s)) =

∫ τ

t
(ut+aux+

b2

2
uxx)ds+auxdW (s) =

∫ τ

t
−ds+auxdW (s)

=⇒ u(τ,X (τ))︸ ︷︷ ︸
=0

− u(t,X (t))︸ ︷︷ ︸
u(t,x)

= −(τ − t) +

∫ τ

t
auxdW (s)

=⇒ u(t, x) = E[τ − t] = E[τ x ,t ].
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Tiny-timestep exits of D

Theorem 3 (Strong convergence rate)

Given critical regions of the size(s) given earlier, then for any ξ > 0 there
exists ∃Cξ > 0 s.t.

E
[
|ν − τ |

]
≤ Cξh

γ−ξ, γ ∈ {1, 1.5}

Notation:
E
[
|ν − τ |

]
= O(hγ−)

Proof idea: Split error into two parts:

E
[
|τ − ν|

]
= E

[
|τ − ν|1ν<τ

]
+ E

[
|τ − ν|1ν>τ

]
=: I + II
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Proof I

For term I ,

ν < τ ≤ T =⇒ X (ν) ∈ D and X (ν) ∈ DC

Since numerical sol exits at mesh point ν ∈ {tn}n, we can write

(τ − ν)1ν<τ = τν,X (ν)
1ν<τ
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Proof II

Moreover, ∃y(ω) ∈ ∂D s.t.

|X (ν)− y | ≤
∣∣X (ν)− X (ν)

∣∣, and τν,y = 0, ∀ω ∈ {ν < τ}

This yields,

I = E
[
(τ − ν)1ν<τ

]
= E

[
τ ν,X (ν)

1ν<τ

]
≤ E

[
E
[
τ ν,X (ν) − τ ν,y

∣∣ Fν

]
1ν<τ

]
= E

[
(u(ν,X (ν))− u(ν, y))1ν<τ

]
≤ LE

[
|X (ν)− y |1ν<τ

]
(Boundary Lip Feynm-K)

≤ LE
[∣∣X (ν)− X (ν)

∣∣] order of scheme
= O(hγ)

Term II relates to overshoot:

II = E
[
|τ − ν|1{ν>τ}

]
≤ C E[d(X (ν), ∂D)] +O(hγ−ξ) = O(hγ−ξ).
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Adaptive time-stepping: Computational cost

Definition 4 (Cost of numerical realization)

Cost of computing one path {X (t)}t∈[0,ν] defined by

Cost(X ) :=

∫ ν

0

1

∆t(X (t))
dt = #timesteps used on [0, ν],

where we assume Cost(Ψγ(x ,∆t)) = O(1) for one-step solver.

Theorem 5 (Computational cost)

For both numerical methods γ ∈ {1, 1.5} it holds that

E[Cost(X )] = O(h−1 log(h−1))
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Proof ideas for γ = 1: I

Events

{∆t(X (t)) = h} ∩ {t < ν} set of paths not in critical region at time t

{∆t(X (t)) = h2} ∩ {t < ν} in critical region at time t.

E
[
Cost(X )

]
= E

[∫ ν

0

1

∆t(X (t))
dt

]

=

∫ T

0

E
[
1{t<ν}∩{∆t(X (t))=h}

]
h

+
E
[
1{t<ν}∩{∆t(X (t))=h2}

]
h2

dt

≤ T

h
+

1

h2

∫ T

0

E
[
1{t<ν}∩{d(X (t),∂D)≤δ}

]
dt︸ ︷︷ ︸

occupation time in critical region
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Proof ideas for γ = 1: II

Occupation time for X bounded by larger-set occuption time for X :∫ T

0

E
[
1{t<ν}∩{d(X (t),∂D)≤δ}

]
dt ≤

∫ T

0

E
[
1{t<τ

D̃
}∩{d(X (t),∂D̃)≤2δ}

]
dt

=

∫ T

0

∫
D̃

p(t, x)1d(x ,∂D̃)≤2δ(x) dx dt

where D̃ = D ⊕ B(0, δ/2) and ”density”
p(t, x) = P({X (t) ∈ dx} ∩ {t < τD̃})/dx solves FP equation

pt = −∇ · (ap) + 1

2
∇ ·

(
bb⊤∇p

)
in (0,T ]× D̃,

p = 0 on [0,T ]× ∂D̃

p(0, x) = δ(x − x0) x ∈ D̃ (fixed x0 ∈ D)
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Proof ideas for γ = 1: III

Key property: p(t, ·) = 0 on ∂D̃ and p Lipschitz near boundary
implies that |p(t, x)| ≤ Lδ inside critical region. Therefore∫

D̃

p(t, x)1d(x ,∂D̃)≤2δ(x) dx ≤ Lδ

∫
D̃

1d(x ,∂D̃)≤2δ dx

= O(δ2)

= O(h |log(h)|)

Conclusion:

E
[
Cost(X )

]
≤ T

h
+

1

h2

∫ T

0

E
[
1{t<ν}∩{d(X (t),∂D)≤δ}

]
dt︸ ︷︷ ︸

=O(h| log(h)|)

= O(h−1| log(h)|)
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Numerical example

Consider the SDE with linear drift and non-linear diffusion given by

dX1 = 0.1X2 dt + 0.25(cos(X1) + 3) dW1

dX2 = 0.1X1 dt + 0.25(cos(X2) + 3) dW2

where

X (0) = (3, 3), domain D = B(X (0), 3) ⊂ R2, and T = 10.

Seek to verify

E[|τ − ν|] = O(hγ−) and E[CostX ] = O(h−1| log(h)|)

Monte Carlo approximation of strong rate:

E
[
|τ − ν|

]
≈ EMC

[
|νh − ν2h|

]
with 107 iid MC samples νh(ω) and ν2h(ω) sharing the same driving
noise.

31 / 38



Weak rate reference solution

”Exact” weak rate estimate:
∣∣E [

τ − νh
]∣∣ ≈ ∣∣EMC

[
τ − νh

]∣∣
where pseudo-reference solution E[τ ] = E[τ0,x0 ] = u(0, x0),

is obtained by solving Feynman–Kac PDE using Gridap.jl FEM8.

Figure: FEM solution of u(0, (x1, x2)) = E[τ 0,(x1,x2)])

8F. Verdugo, S. Badia, Computer physics communications 276, 108341 (July 2022).
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Conclusion

Our method improves error rate in E[|τ − ν|] = O(hγ) from literature
1/2 to γ = 1.5 at nearly same cost

Our theoretical efficiency gains hinge on restrictive assumptions:

diffisuion b being near-diagonal
∂D being C 4

Cost per evaluation of Ψγ is O(1)

Extension by Sankar:

Multilevel Monte Carlo method

EMLMC [ν] =
L∑

ℓ=1

EMℓ
[νhℓ − νhℓ−1

] + EM0 [νh0 ]

Approximating payoff functions dependent on exit state and exit time,
i.e. g(τ,Xτ )
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Extensions I:

Arbitrary order approximations at near-linear cost: O(h−1 log(h−1))
using strong Itô–Taylor scheme of any order γ > 1.5 (Sankar’s PhD
thesis for GBM and Wiener processes.)

Exit times for time-dependent or lower-regularity domains D132 E. Gobet, S. Menozzi / Stochastic Processes and their Applications 120 (2010) 130–162

Fig. 1. Time–space domain and its time sections.

V�
⌧�

:= g(⌧� ^ T, X�
⌧�^T )Z�

⌧�^T +

Z ⌧�^T

0
Z�

�(s) f (�(s), X�
�(s))ds

with Z�
t = e�

R t
0 k(�(r),X�

�(r))dr
,

we introduce the quantity

Err(T,�, g, f, k, x) = Ex [V�
⌧�

� V⌧ ] (1.4)

that will be referred to as the weak error.
Note that in V�

⌧�
, on {⌧�  T }, the function g is a.s. not evaluated on the side partS

0tT {t}⇥@ Dt of the boundary (g must be understood as a function defined in a neighborhood
of the boundary). At first sight, this approximation can seem coarse. Anyhow, it does not affect
the convergence rate and really reduces the computational cost with respect to the alternative that
would consist in taking the projection on @D. It is a commonly observed phenomenon that the
error is positive when g is positive (overestimation of Ex (V⌧ )), because we neglect the possible
exits between two discrete times: see [7,5,16]. In addition, it is known that the error is of order
�1/2: see [16] for lower bound results, see [18] for upper bounds in the more general case of Itô
processes. But so far, the derivation of an error expansion Ex [V�

⌧�
� V⌧ ] = C

p
�+ o(

p
�) had

not been established: this is one of the intermediary results of the current work (see Theorem 4).
Our goal goes beyond this result, by designing a simple and very efficient improved procedure.

We propose to stop the Euler scheme at its exit of a smaller domain in order to compensate the
underestimation of exits and to achieve an error of order o(

p
�). The smaller domain is defined

by its time section

D�
t = {x 2 Dt : d(x, @ Dt ) > c0

p
�|n⇤� (t, x)|}

where n(t, x) is the inward normal vector at the closest point of x on the boundary @ Dt , see
Figs. 2 and 3 for details.2 We shall interpret |n⇤� (t, x)| as the noise amplitude along the normal
direction to the boundary. The constant c0 is defined later in (2.1) and equals approximatively
0.5826(. . .). Thus, the associated exit time of the Euler scheme is given by

⌧̂� = inf{ti > 0 : X�
ti 62 D�

ti }  ⌧�.

2 The closest point of x may not be unique for points x far from @ Dt . But since the above definition of D�
t involves

only points close to the boundary, this does not make any difference.

Figure: (Gobet and Menozzi, 2010)

Let terminal time T → ∞, likely to be possible as
bbT |D > 0 =⇒ P(τ > t) ≤ e−λt for some λ(a, b,D,X0) > 0.
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Reflected diffusion I

dX (t) = a(X )dt + b(X )dW (t) + ν(X )dL(t) t ∈ [0,T ],

in domain D where L(t) is the local time near ∂D and ν : ∂D → Rd inward
pointing normal.

For half-space (0,∞), ν = 1 and above is limit of splitting method:

X̂n+1 = a(Xn)∆tn + b(Xn)∆Wn

and projection onto D:

Xn+1 = X̂n+1 + 1×max(0,−X̂n+1)︸ ︷︷ ︸
≈∆Ln

.
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Reflected diffusion II

Challenge: For uniform timesteps above method yields

max
n

E[|X (tn)− X (tn)|2] ≤ C |∆t log(∆t)|1/2 (Slominski 2001)

Ongoing project (M. Giles and J. Meo): Use similar adaptive
timestepping ideas to achieve

max
n

E[|X (tn)− X (tn)|2] ≤ C |∆t log(∆t)|

for application in multilevel Monte Carlo.

Connection to PDE: u(t, x) = E[g(X t,x(T ))] solves

∂tu = −a · ∇u − 1

2
tr
(
bb⊤∇2u

)
on (0,T )× D

ν · ∇u = 0 on [0,T ]× ∂D

u(T , x)= g(x) on D
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