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Problem Description

m Consider the bounded, open and connected domain D ¢ R? and a
d-dimensional process:
dX(t) = a(X(t))dt + b(X(t))dW(t)
X(O) =xp €D

m Goal: Efficient numerical for
approximations of exit time

Boundary, 01

Domain, D

T=inf{t>0|X(t)¢D}AT

where T > 0 is given.
m Main ideas:
Small timestep size close to the
boundary 0D, larger elsewhere.
High-order strong It6—Taylor

schemes.
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Assumptions

A

The domain boundary 9D is C* continuous.

B

Coefficients satisfy a € C3(RY,R?) and b € C3(R9, R9*)

There exists constants Eb > Cp > 0 such that

& €2 < €T (b(x)bT (x))E < Colef,  ¥(x,£) € D x R?

Remark

Sufficient: 7 is well-defined when a, b uniformly Lipschitz, and D € B(R¢).

Additional regularity needed for numerical methods.
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Applications: Langevin dynamics

Mean first-passage time between pseudo-stable states x; and x, for

dX(t) = —VU(X(t))dt + dW(t), T:=inf{t > 0| X(t) =0}

Position, X (t)

| | | | .
0 250 500 750 1000
Time, ¢
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Application: American put option
m Holder of option has the right (but not the obligation) to sell a stock
X(t) at price E > 0 any time between [0, T].
m Price of this option?:

sup E[max(E — X(7),0)]
7Q[0,T]

Do not exercise E
Under some assumptions, there exists 8_/__/

(Dt)tepp,1) C Rsit. s

4 Exercise

T(w) = inf{t € [0, T] | X(t) ¢ D:}.

0

o 0.1 0.2 03 0.4 05 0.6 0.7 08 0.9 1

ID. J. Higham, An introduction to financial option valuation: mathematics,
stochastics and computation, (Cambridge University Press, 2004), vol. 13.
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Methods for exit times

Methoods

Feynman—Kac PDE

Computationally ex-
pensive as dimension d
increases

Monte Carlo methods

Scales well with dimen-
sion d (Method of
choice)

Walk on spheres

Needs good approxima-
tion of sphere hitting dis-
tributions of SDE.
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The Monte Carlo method with Euler—-Maruyama

Approximate true exit time by
v=inf{te[0,T]| X(t)¢ D} AT
where X(t) is a numerical solution of SDE
dX(t) = a(X(t))dt + b(X(t))dW
Standard method is Euler—Maruyama:

X(tns1) = a(X(ta)) At + B(X(t2)) (W(tar1) — W(ts)),

AW,

where AW, % N(0, At Iy).

Extension to continuous time: X(t) = X(tp) VtE€ [tn, tnt1).
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Monte Carlo methods for exit times I:

Results for X(t) and v(X(-)) computed with the Euler—Maruyama using
constant step size At = h:

m Weak error? ’]E [v— 7']| = O(h'/?).
(NB! compare to ‘IE [(X(T) —Y(T)H = O(h).)

m Strong error’: E [[v — 7[] = O(hY/?).

m Multilevel Monte Carlo method for approximating mean-exit time*
achieves

E |Epmcly] — E7)? = O(Work tog(Work)3/2),

vs single level  E|Eyc[v] — E7|> = O(Work=1/2)

2E. Gobet, Stochastic processes and their applications 87, 167197 (2000).
3B. Bouchard et al., Bernoulli 23, 1631-1662 (2017).
“M. B. Giles, F. Bernal, SIAM JUQ 6, 1454-1474 (2018).
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Monte Carlo methods for exit times |I:

= Main source of error: The discrete process X(t) misses first exit of
the true process X(t).

m Correction through boundary shifting: shrink the domain D for
discrete problem®® by magnitude O(h'/?).

Improves weak convergence rate: |E[v — 7]| = O(h)

o
A

T.00

°M. Broadie et al., Mathematical finance 7, 325-349 (1997).
SE. Gobet, S. Menozzi, Stochastic processes and their applications 112, 201-223

(2004). 10/38



Overview

Numerical schemes for SDE and adaptive timestepping
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Strong It6—Taylor schemes

Its SDE
dX(t) = a(X(t)) dt + b(X(t)) dW(t)

Approximation

tht1 tht1
,wmﬂ)—x@g+/ﬁ 4XUDdr+/ X(t)) dW(t)
tn N—— tn N——
~a(X(tn)) ~b(X(tn))

jon
—~

motivates Euler—-Maruyama scheme (It6—Taylor strong 1/2)

X(tos1) = a(X(t2))At + b(X(t))) AW, n>0
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Strong It6—Taylor schemes

Its SDE
dX(t) = a(X(t)) dt + b(X(t)) dW(t)

Approximation
th1
X(tn+1) :X(t,,)+/ X(t
tn N——"

Additional correction term:
thi1 rtht1

| b @)-bx)awo ~ [ B X (E)bx(e)
t t,
Leads to Milstein scheme (It6—Taylor strong 1)

X(tn11) = a(X(tn)) At + b(X(

f+1
+ b'(X t,,/ /dW )dW(t

—
—
~
~
—
~
3
~
—
o
—~
~
~—

.. etc.
12/38



Overview numerical method

m We simulate the SDE using the order v strong [t6—Taylor scheme.
Notation:

X(tap1) = Vo (X(tn), Aty), n=0,1,... (1)
Y(O) = X0
m The size of timestep At, = At(X(t,)) is chosen as function of the

current state X(t,).

m We consider v € {1,1.5}, and "strong order 7" implies that

E[max [X(tn) — X(ta) ] = O(h")

m Continuous time extension of numerical solution:

X(t) = X(tn), Yt € [tn, tat1)
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Strong It6—Taylor schemes — explicit form
If the diffusion mapping b is a diagonal matrix, then ’
(Vo (X(tn), At)); = Xi(tn) + a(X () Aty + bii(X(ta)) AW, +
e b,,( () (AW, — Aty) 42 22X (1) A+
50 bi(X(ta)) (AW AL, — AZ)) + L 2;(X(ta))AZ],
+§£’£’b;,-(X(t,,)) (%(A Wiy~ At,) AW

ith £/ = b;(x)0, and L£0= Oy P Dxixi
Wi (X) i an Za + 2 1 IRl

(Red part): the Milstein scheme,  (red part) (blue part): v = 1.5.
NB! Cost involved in sampling the random variables (AW,, AZ,) is O(1)

where
. th+1 S2 .
AZ,’7 = / / dW’(Sl)dSQ
tn tn

"Kloeden and Platen, Numerical Solution of Stochastic Differential Equations, 2011
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Adaptive time-stepping idea

m Step size parameter: h > 0
m Critical region parameter: § > 0

m and the Milstein scheme:

h, if d(X(tn),0D) >
At, = _
h?, if d(X(t),0D) <6

ool
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Adaptive time-stepping idea

m Step size parameter: h > 0
m Critical region parameter: § > 0

m and the Milstein scheme:

Ap {h, if d(X(tn), D) > &
n -— 2 . -~ < B
RGOS e o
\\\
| o
m Order 1.5 scheme with
DOMAIN, D e
01> 6> > 0: k\_/é?‘\\\ R ws)
=" WomoF
h7 If d( (tn),ﬁD) > 51 CRITICAL REGIION

X
At, = hz, if d(Y(t,,),aD) S [(52,(51)
if d(X
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Adaptive time-stepping idea

Our goal: Achieve strong convergence rate 7:
E[|v—7|] = O(h"), v=1,15

essentially at same asymptotic cost as when using uniform timesteps
At = h, namely O(h71).

Conflict between cost and accuracy: Critical regions(s) must be

m large enough to achieve accuracy goal
m small enough to have low computational cost
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Lemma 1 (Exiting domain D using smallest timestep (v = 1))

§(h) = \/8Cydhlog(h1).

Then probability that stepsize is largest at exit time is

Given h > 0, define

P (At(X(v-)) = ) = O(A),

Proof idea for v = 1: An exit of D at time t, with large timestep At, = h
is contained in event

X(tnr1) = X(ta)] > 6
Leading order approximation
X(tne1) = X(tn)] = [6(X(ta)) AWa| + O(h) £ \/ Co| AW, .
And 6(h) chosen sufficently large to ensure that

P(\/ ColAW,| > 6) = O(h?).
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A(X(-)) =re(Z(en)) = hy




Lemma 1 (Similar exit result for v = 1.5 method)

Given h > 0, define size of the two critical regions by

S1(h) = \/126bdhlog(h*1) and 55(h) = \/16€bdh2 log(h~1).

Then probability that stepsize at exit time is not smallest

P (At(X(v—)) > h*) = O(h")

m This result is helpful for bounding overshoot error
E[d(X(v),0D)] < E[\/At(X(v=))] < h"

m Overshoot and exit-state error of |X(7) — X(v)] relates to exit-time
error |7 — v| through Feynman—Kac PDEs.
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Feynman—-Kac PDE

Recall that 7 :=inf {t >0 | X(¢t) ¢ D} AT

Definition 2 (Time-adjusted exit time)

is the exit time of the diffusion process X(s) that goes through
(t,x) € [0, T] x R? and with time starting from t:

t,x

7 ::(inf{szt|X(s)§§DandX(t):x}—t)/\(T—t)

The mean exit time of the time-adjusted exit is defined as

u(t,x) =E [79%], v(t,x) € [0, T] x D.
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Feynman—-Kac PDE

Proposition 1 (Gilbarg and Trudinger 2015, Gobet and Menozzi 2010)

Given a, b € C3 and domain D with C* boundary, the function
u(t,x) = E [7%¥] is the unique solution in
CH2([0, T] x D) NC([0, T] x D) of backward PDE

1
atu:—a~VU—§tl’ (bbTVQU) —1 in (07 T)X Dv

u=0 on ([0, T]xdD)uU ({T} x D).

And there exists a uniform boundary gradient Lipschitz constant L > 0
such that

u(t, )~ u(t, )| < Lix—yl,  (t.x,y) € [0, T] x D x 9D
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Motivation

1D SDE: dX(s) = a(X)ds + b(X)dW(s) s>t X(t)=x

Let u(t, x) solve backward PDE

b2(x
ur + a(x)uy + é)uxx = -1, ul(o,1xop = 0.
[td's rule
2

b
du(s, X(s)) = (ur + auy + fuxx)ds + au,dW(s) = —ds + au,dW(s)
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Motivation

1D SDE: dX(s) = a(X)ds + b(X)dW(s) s>t, X(t)=x

Let u(t, x) solve backward PDE
b?(x)

ut+a(x)uX+TuXX= -1, ulo,Txop = 0.

Itd's rule

T T b2 T
/ du(s,X(s))—/ (ut+aux+2uXX)ds+auXdW(s)—/ —ds+au,dW(s)
Jt

Jt Jt

= u(7, X(7)) —u(t,X(t)) = —(r —t)+ /: au,dW(s)

=0 u(t,x)

= u(t,x) = E[r — t] = E[7*f].
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Overview

Convergence rate and computational cost of methods
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Tiny-timestep exits of D

Theorem 3 (Strong convergence rate)

Given critical regions of the size(s) given earlier, then for any £ > 0 there
exists 3C¢ > 0 s.t.

Ellv—r7|]] <CGh™¢,  ~ye{1,15}

Notation:
E[lv —7|] = O(h"")

Proof idea: Split error into two parts:

Ellr—v|]] =E[Ir —v| Lo +E[|7 —v|Losd] =1+ 11
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Proof |

For term /,

v<7<T = X(v)e D and X(v) € D¢

Since numerical sol exits at mesh point v € {t,},, we can write

(7— - V):H'V<T = 7'1/7X(l/)]ll/<'r

X
BOUNDARY , DD N [ XD

|
[
1
|

| o —
|
I

Y T

¥, &)
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Proof Il

Moreover, Jy(w) € 9D s.t.

(X(v) =yl < |X(v) = X(v)|, and 7" =0, Ywe{v<rt}

This yields,
=K [(7_ V<T]
=K [TV X(y)ﬂu<7—}
<E[E[X0 - 7| AlL]
=K [(u — u(v, y))ILKT]
< LE [ X( y|]ll,<T} (Boundary Lip Feynm-K)
S LF |:IX ” order ogscheme O(h’y)
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Proof Il

Moreover, Jy(w) € 9D s.t.
(X(v) =yl < |X(v) = X(v)|, and 7" =0, Ywe{v<rt}

This yields,
I =E (T —v)l,<]
=K [TV X(y)ﬂu<r}
<E [IE [TV7X(V) — 7Y ’ .7:,,] I[,,<T]
=E [(u(v. X()) = u(v,y))Lo<-]
< LE[[X(v) — y[lo<] (Boundary Lip Feynm-K)
< LE[X() = X()] "= o)

Term /I relates to overshoot:
Il =E “7' — v Il{l,>7}} < CE[d(Y(V), GD)] + O(h”‘é) = O(h”‘g).
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Adaptive time-stepping: Computational cost

Definition 4 (Cost of numerical realization)

Cost of computing one path {Y(t)}te[o,u] defined by

Cost(X) ::/0 At()l((t))dt = #timesteps used on [0, 7],

where we assume Cost(V,(x, At)) = O(1) for one-step solver.

Theorem 5 (Computational cost)
For both numerical methods ~y € {1,1.5} it holds that

E[Cost(X)] = O(h~log(h™1))
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Proof ideas for v = 1: |

Events
m {At(X(t)) = h} N {t < v} set of paths not in critical region at time ¢

m {At(X(t)) = h?} N {t < v} in critical region at time t.

E [ Cost(X)] = E {/oymdt}

/T E |:]1{t<l/}ﬂ{At(Y(t)):h}i| E [1{t<u}m{At(Y(t)):h2}]
— - dt
0

h h?

T 1 [T
Tt E |:]l{t<u}ﬂ{d(Y(t),BD)§§}i| dt
Jo

J/

TV
occupation time in critical region
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Proof ideas for v = 1: |l

Occupation time for X bounded by larger-set occuption time for X:

T T
/0 K [ﬂ{t@}m{d(X(t) oD <6}} dt < / E [1{t<TD}ﬂ{d(X( t),0D) <2a}] dt

/ / (t,x)1 de<25( x)dxdt

where D = D @ B(0,4/2) and " density”
p(t,x) = P({X(t) € dx} N {t < 75})/dx solves FP equation

1 ~
p: =—V - (ap) + EV . <bbTVp> in (0, T]xD,
p=0 on [0,T]x oD
p(0,x) = d(x — xo) xeD (fixed xo € D)

28/38



Proof ideas for v = 1: Il

Key property: p(t,

) =0on dD and p Lipschitz near boundary
implies that |p(t, x)| <

Lo inside critical region. Therefore

/Ep(tvx)]ld(x,85)§26(x) dx < L5/5 1d(x,85)§26 dx

= 0(52)
= O(h |log(h)|)
Conclusion:
_ T 1 (7
E [COSt(X)] < n + e . E [1{t<u}ﬁ{d(7(t),8D)§6}] dt

—O(hllog(h)))

— O(h™"] log(h)])
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Numerical example

Consider the SDE with linear drift and non-linear diffusion given by
dX; = 0.1X5dt + 0.25(cos(X1) + 3) dW;
dXy = 0.1X; dt + 0.25(cos(X2) + 3) dW,

where

X(0) =(3,3), domain D= B(X(0),3) c R?, and T = 10.

Seek to verify
E[j7 —v|]] = O(h"") and E[Cost X] = O(h~}|log(h)]|)

Monte Carlo approximation of strong rate:

E [|7 = v|] = Emc [|[vn — val]

with 107 iid MC samples v4(w) and v5p(w) sharing the same driving
noise.
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Weak rate reference solution

"Exact” weak rate estimate: ‘IE [T — I/h] ‘ 2 |EMC [7' — 1/,,”

where pseudo-reference solution  E[r] = E[7%*] = (0, xo),
is obtained by solving Feynman—Kac PDE using Gridap.jl FEM&.
6

6

5 5
4 4
“3‘ 3 3
2 2
1 1
0 0

T

Figure: FEM solution of u(0, (x1, x2)) = E[r%0e:%)])

8F. Verdugo, S. Badia, Computer physics communications 276, 108341 (July 2022).
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E [Jvy, — vanl]

Strong

error

Weak error

| 94l 1
1 —= 276F 1
2
=
| 9-8 b
) =
=8
9-10
—e— Order 1 method —e— Order 1 method
—&— Order 1.5 method —&— Order 1.5 method
©- Reference 1 slope gzl 4 ©- Reference 1 slope
A Reference 1.5 slope | | | & Reference 1.5 slope
27° 274 273 277 276 275 274 273
h
Computational complexity
P P y
T T T
925 |- 1
922 1
919 | 1
916 | 1
2'% |—e— Order 1 method 1
—A— Order 1.5 method
o170 0 log(h))

22 16 9-14 9-12
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Conclusion

m Our method improves error rate in E[|7 — v|] = O(h") from literature
1/2 to y = 1.5 at nearly same cost

m Our theoretical efficiency gains hinge on restrictive assumptions:

m diffisuion b being near-diagonal
m 0D being C*
m Cost per evaluation of W, is O(1)

Extension by Sankar:

m Multilevel Monte Carlo method

L
Emimclv] = ZEMe [th - Z/he—1] + Emp [Vho]
(=1

m Approximating payoff functions dependent on exit state and exit time,
e g(r.X,)
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Extensions I:

m Arbitrary order approximations at near-linear cost: O(h~!log(h~1))
using strong |té6—Taylor scheme of any order v > 1.5 (Sankar's PhD
thesis for GBM and Wiener processes.)

m Exit times for time-dependent or lower-regularity domains D

} time
T

BN
o 4

Figure: (Gobet and Menozzi, 2010)
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Reflected diffusion |

dX(t) = a(X)dt + b(X)dW/(t) + v(X)dL(t) tel0,T],
in domain D where L(t) is the local time near 9D and v : 9D — R? inward
pointing normal.

For half-space (0,00), ¥ =1 and above is limit of splitting method:

K1 = a(Xn) Aty + b(Xn) AW,

and projection onto D:

Xn+1 = )%TH*l +1x max(O, *)%,H,l) .
—_——

~ALp
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Reflected diffusion Il
Challenge: For uniform timesteps above method yields
max E[| X (t,) — X(t,)|?] < C|Atlog(At)[*?2  (Slominski 2001)
n
Ongoing project (M. Giles and J. Meo): Use similar adaptive
timestepping ideas to achieve
maxIE[|X(t,,) — X(t)?] < C|Atlog(At)|

for application in multilevel Monte Carlo.
Connection to PDE: u(t, x) = E[g(X"*(T))] solves

1 T2

8tu:—a-Vu—§tr(bb Veu) on (0,T)x D

v-Vu=0 on [0, T] x 0D
u(T,x)= g(x) on D
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