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Fractional Laplacian and a-stable processes

Let a € (0,2), d > 2, and let

@ o . +y) — u(x) d
A2 u(x) = —(—A)*"2u(x) := cg.0 lim / ulx+y) = ulx) dy, xeR"
e—=0% Jp(0,¢)c |y[d+e

The formula makes sense, e.g., for u € C2(RY). For those functions A%/2 coincides with

the generator of the semigroup P; corresponding to the isotropic a-stable process X:,
given by the formula P.f(x) = EXf(X;).
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Fractional Laplacian and a-stable processes

Let a € (0,2), d > 2, and let

@ o . +y) — u(x) d
A2 u(x) = —(—A)*"2u(x) := cg.0 lim / ulx+y) = ulx) dy, xeR"
e—=0% Jp(0,¢)c |y[d+e

The formula makes sense, e.g., for u € C2(RY). For those functions A%/2 coincides with
the generator of the semigroup P; corresponding to the isotropic a-stable process X:,
given by the formula P.f(x) = EXf(X;).

We have P:f(x) = p; * f(x), where p; is smooth and

_ t
pr(x) ~ <t /e n |X|d+a>, t>0, xR
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Fractional Laplacian and a-stable processes

Let a € (0,2), d > 2, and let

@ o . +y) — u(x) d
A2 u(x) = —(—A)*"2u(x) := cg.0 lim / ulx+y) = ulx) dy, xeR"
e—=0% Jp(0,¢)c |y[d+e

The formula makes sense, e.g., for u € C2(RY). For those functions A%/2 coincides with
the generator of the semigroup P; corresponding to the isotropic a-stable process X:,
given by the formula P.f(x) = EXf(X;).

We have P:f(x) = p; * f(x), where p; is smooth and

_ t
pr(x) ~ <t /e n |X|d+a>, t>0, xR

Notation: pe(x,y) = pe(x — y), v(x,y) = v(x = y) = ca.alx — y| 7.
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Some equations involving the fractional Laplacian

The Dirichlet problem for the Poisson equation

{Ao‘/zu(x) =f(x), x€D,

u(z) = g(z), ze D (OP)

For f = 0 we refer to u as an a-harmonic (or just harmonic) function.
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Some equations involving the fractional Laplacian

The Dirichlet problem for the Poisson equation

A2 (%) = f(x), x €D, (DP)
u(z) = g(z), ze D
For f = 0 we refer to u as an a-harmonic (or just harmonic) function.
Initial-exterior value problem for the fractional heat equation
deu(t, x) = A°2u(t, x), te(0,T), xeD,
u(t,x) = g(t,x), te(0,T), x € D°, (FHE)

u(0, x) = wo(x), x € D.

Solution to (FHE): caloric function.
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Some equations involving the fractional Laplacian

The Dirichlet problem for the Poisson equation

A2 (%) = f(x), x €D, (DP)
u(z) = g(z), ze D
For f = 0 we refer to u as an a-harmonic (or just harmonic) function.
Initial-exterior value problem for the fractional heat equation
deu(t, x) = A°2u(t, x), te(0,T), xeD,
u(t,x) = g(t,x), te(0,T), x € D°, (FHE)

u(0, x) = wo(x), x € D.

Solution to (FHE): caloric function.

Actual notioins of solutions will be discussed later.
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Goals

Assumption: d > 2, D is nonempty, open, bounded and Lipschitz.
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Goals

Assumption: d > 2, D is nonempty, open, bounded and Lipschitz.

Plan of the talk:
o Integral representations and structure of nonnegative solutions to (FHE).
o Relation between different notions of solution to (FHE).

o (Time permitting) Boundary regularity of solutions to (DP) and (FHE) with g = 0.
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Fundamental solutions

Let
7 =inf{t >0: X: ¢ D}.
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Fundamental solutions

Let
7 =inf{t >0: X: ¢ D}.

The Dirichlet heat kernel for D is

pe(x,y) = pe(x,y) = EX[pr—rp(Xrp, ¥); 0 < t], t>0, x,y € R

Note: pP(x,y) = pP(y,x) and p2(x,y) =0 if x ¢ D or y ¢ D.
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Fundamental solutions

Let
7 =inf{t >0: X: ¢ D}.

The Dirichlet heat kernel for D is
PL(x,y) = pelx,y) = E'[pe—rp(Xep,¥)i 70 < 1], t>0, x,y € R,
Note: p2(x,y) = pP(y,x) and p°(x,y) =0 if x ¢ D or y ¢ D.
Green function for A%/? in D:
Go(xy) = [ pPlxy)de xy R (Golx,x) =0, x € D)
0

Note: Gp(x,y) = Gp(y,x) and Gp(x,y) =0if x¢ Dory ¢ D.
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Fundamental solutions

Let POf pot (x,¥)f(y)dy, t >0, x e R
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Fundamental solutions

Let POf pot (x,¥)f(y)dy, t >0, x e R

Lemma

For any x € D the function v(y,t) = p°(x,y) solves (9; — A%/?)v(t,y) = 0 pointwise.

Furthermore, pg(x,-) = 0x in the sense that for every f € [* we have PPf — f in [*.
t—0t

Artur Rutkowski (WUST) Fractional caloric functions Trondheim, 11.12.2024 6/29



Fundamental solutions

Let POf pot (x,¥)f(y)dy, t >0, x e R

Lemma

For any x € D the function v(y,t) = p°(x,y) solves (9; — A%/?)v(t,y) = 0 pointwise.

Furthermore, pg(x,-) = 0x in the sense that for every f € [* we have PPf — f in [*.
t—0t

If uo is nice enough (e.g. L?), then PP up solves (FHE) pointwise with g = 0.
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Fundamental solutions

Let POf pot (x,¥)f(y)dy, t >0, x e R

Lemma

For any x € D the function v(y,t) = p°(x,y) solves (9; — A%/?)v(t,y) = 0 pointwise.

Furthermore, pg(x,-) = 0x in the sense that for every f € [* we have PPf — f in [*.
t—0t

If uo is nice enough (e.g. L?), then PP up solves (FHE) pointwise with g = 0.

Lemma

For any x € D the function v(y) = Gp(x,y) solves A%/?v(y) = 0 pointwise in D \ {x}. J
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Fundamental solutions

Let POf pot (x,¥)f(y)dy, t >0, x e R

Lemma

For any x € D the function v(y,t) = p°(x,y) solves (9; — A%/?)v(t,y) = 0 pointwise.

Furthermore, pg(x,-) = 0x in the sense that for every f € [* we have PPf — f in [*.
t—0t

If uo is nice enough (e.g. L?), then PP up solves (FHE) pointwise with g = 0.

Lemma

For any x € D the function v(y) = Gp(x,y) solves A%/?v(y) = 0 pointwise in D \ {x}. J

Let Gp[f](x) = [, Go(x,y)f(y) dy, x € R? (Green potential of f).
If f is regular enough, then Gp[f] solves (DP) pointwise with g = 0.
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Integral representations and structure of nonnegative caloric functions
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Caloric functions in cylinders

deu(t, x) = A*2u(t, x), te(0,T), xeD,
u(t,x) = g(t, x), te(0,T), xe D,
u(0, x) = wo(x), x e D.

g(t,x) (0,T)x D g(t, x)
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Caloric functions in cylinders

deu(t, x) = A*2u(t, x), te(0,T), xeD,
u(t,x) = g(t, x), te(0,T), xe D,
u(0, x) = wo(x), x e D.

g(t,x) (0,T)x D g(t, x)

(FHE)

We will define solutions to (FHE) by means of a mean-value property with respect to the

space-time a-stable process )
Xt — (_t, Xt)

Think of adding a drift of velocity —1 in the direction of a new coordinate.
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Dirichlet problem and Markov processes

The general idea of solving (nonlocal) PDEs involving Markov operators goes back at
least to Kakutani:
formally, if L is the generator of a Markov process Y;, then a solution to

{Lu(x) =0, x €D,
u(x) =g(x), xeD",

is given by u(x) = EX[g(X:,)]-
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Dirichlet problem and Markov processes

The general idea of solving (nonlocal) PDEs involving Markov operators goes back at
least to Kakutani:
formally, if L is the generator of a Markov process Y;, then a solution to

{Lu(x) =0, x € D,
u(x) = g(x), x € D¢,
is given by u(x) = EX[g(X:,)]-

Example
L=A — X:— Brownian motion — Law(X:,) — harmonic measure (9D)

L=A%? — X, — a-stable process —» Law(X;,) — a-harmonic measure ((D)¢)
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Dirichlet problem and Markov processes

The general idea of solving (nonlocal) PDEs involving Markov operators goes back at
least to Kakutani:
formally, if L is the generator of a Markov process Y;, then a solution to

Lu(x) =0, x € D,
u(x) =g(x),  xeD5,
is given by u(x) = EX[g(X:,)]-
Example
L=A — X:— Brownian motion — Law(X:,) — harmonic measure (9D)

L=A%? — X, — a-stable process —» Law(X;,) — a-harmonic measure ((D)¢)

v

Lemma

On C}?(RY), the generator of X coincides with —d; + A®/2.
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First exit from a cylinder

If G =[0,t) x U then X starting at (t,x) can exit G in two ways depending on whether
X leaves U before time t or not.

Figure: U = (—3,3). On the left X leaves U before t = 1, on the right it survives until t = 1.

10 7 10
08 08
0.6 0.6
04 1 0.4
02 02
0.0 0.0
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First exit from a cylinder

If G =[0,t) x U then X starting at (t,x) can exit G in two ways depending on whether
X leaves U before time t or not.

Figure: U = (—3,3). On the left X leaves U before t = 1, on the right it survives until t = 1.

10 7 10
08 08
0.6 0.6
04 1 0.4
02 02
0.0 0.0

ECu(Xre) = ECNu(Xeg )i mu < 8] + ECu(Xeg ) 7o > 1]
= ENu(ru, Xry); 7u < t] + P uo(x).
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Lateral exit distribution

Ikeda—Watanabe formula: let / C [0,00) and A C U<, I, A — Borel. Then,

P[ry € I; Xr, EA]:///psu(x,y)u(y,z)dydzds.
1Jatu
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Lateral exit distribution

Ikeda—Watanabe formula: let / C [0,00) and A C U<, I, A — Borel. Then,
Plry € I; Xr, € Al = // / pY(x,y)v(y,z) dy dz ds.
1Jadu
Let JY be the lateral Poisson kernel defined as

JU(t,x,s,z) = / pf”,s(x,y)y(y,z) dy, s<t, xeU, zeU".
U
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Lateral exit distribution

Ikeda—Watanabe formula: let / C [0,00) and A C U<, I, A — Borel. Then,

P[ry € I; Xr, eA]:///psu(x,y)u(y,z)dydzds.
1Jadu

Let JY be the lateral Poisson kernel defined as
JU(t,x,s,z) = / pf”,s(x,y)y(y,z) dy, s<t, xeU, zeU".
U

Then,

t
ECu(ry, Xry ); 70 < 1] :/ / u(s,z)JY(t, x, s, z) dz ds.
0 c
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Lateral exit distribution

Ikeda—Watanabe formula: let / C [0,00) and A C U<, I, A — Borel. Then,
Plry € I; Xr, € Al = /’/A/Upsu(x,y)u(y,z) dy dz ds.
Let JY be the lateral Poisson kernel defined as
JU(t,x,s,z) = /Upf",s(x,y)y(y,z) dy, s<t, xeU, zeU".
Then,

t
B ulry X)) o<t = [ [ u(s,2)0(e.x,5.2) dz s
0 c
t
E(f«X)u(XTG):/th(x,y)uo(y) dy+/ / u(s, z)JY(t, x,s,z) dz ds.
U 0 ‘
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Caloric functions in cylinders

Definition

o We say that v > 0 is caloric in [0, T) x D if for all (t,x) € (0, T) x D,
u(t,x) = E"u(X,.) < oo, (1)

holds for every open G CC [0, T) x D such that (t,x) € G.
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Caloric functions in cylinders

Definition

o We say that v > 0 is caloric in [0, T) x D if for all (t,x) € (0, T) x D,
u(t,x) = E"u(X,.) < oo, (1)
holds for every open G CC [0, T) x D such that (t,x) € G.

o If (1) holds for (0,t) x D in place of G, then we say that u is regular caloric.

Artur Rutkowski (WUST) Fractional caloric functions Trondheim, 11.12.2024 12 /29



Caloric functions in cylinders

Definition

o We say that v > 0 is caloric in [0, T) x D if for all (t,x) € (0, T) x D,
u(t,x) = E"u(X,.) < oo, (1)
holds for every open G CC [0, T) x D such that (t,x) € G.
o If (1) holds for (0,t) x D in place of G, then we say that u is regular caloric.

o If u =0 on the parabolic boundary

D” =D x {0} UD x (0, T),

then we say that u is singular caloric.

© J. L. Doob. Classical potential theory and its probabilistic counterpart, 1984.

e Z.-Q. Chen, T. Kumagai. Heat kernel estimates for stable-like processes in d-sets. Stoch. Process. App.
108:27-62, 2003.
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Caloric functions in cylinders

Definition

o We say that v > 0 is caloric in [0, T) x D if for all (t,x) € (0, T) x D,
u(t,x) = E"u(X,.) < oo, (1)
holds for every open G CC [0, T) x D such that (t,x) € G.
o If (1) holds for (0,t) x D in place of G, then we say that u is regular caloric.

o If u =0 on the parabolic boundary

D” =D x {0} UD x (0, T),

then we say that u is singular caloric.

© J. L. Doob. Classical potential theory and its probabilistic counterpart, 1984.

e Z.-Q. Chen, T. Kumagai. Heat kernel estimates for stable-like processes in d-sets. Stoch. Process. App.
108:27-62, 2003.

Note: by virtue of the strong Markov property we can and will verify the mean-value
property only on cylinders (0, t) x U, where U CC D is Lipschitz.
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Beyond regular caloric functions

If uis regular caloric, then it is uniquely determined by g and wo:

t
u(t, x) = P uo(x) +/ / g(s,2)J°(t,x, s, z) dz ds.
0 c
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Beyond regular caloric functions

If uis regular caloric, then it is uniquely determined by g and wo:

t
u(t, x) = P uo(x) +/ / g(s,2)J°(t,x, s, z) dz ds.
0 c

Problem: are there caloric functions which are not regular? Put differently, is a caloric
function uniquely determined by g and ug?
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Beyond regular caloric functions

If uis regular caloric, then it is uniquely determined by g and wo:

t
u(t, x) = P uo(x) +/ / g(s,2)J°(t,x, s, z) dz ds.
0 c

Problem: are there caloric functions which are not regular? Put differently, is a caloric
function uniquely determined by g and ug?

Elliptic case (A*/2u = 0):
@ Hmissi (1994): explicit example of a positive singular a-harmonic function.

@ Bogdan (1999): full representation of nonnegative a-harmonic functions in Lipschitz
domains. Singular harmonic functions are of the form [, ) M7 (x, @)u(d@Q) with

X . Gp(x,y) .
0 — A
MR (x,Q) = Dallvm 0 Golxo,y)’ x €D, Q €dD. (Martin kernel)

© K. Bogdan. Representation of a-harmonic functions in Lipschitz domains. Hiroshima Math. J. 29:227-243,
1999.

e F. Hmissi. Fonctions harmoniques pour les potentiels de Riesz sur la boule unite, Expo. Math. 12(3):281-288,
1994.
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Parabolic Martin kernel

For cones I' with apex at 0 Bogdan—Palmowski-Wang showed that the limits below exist:

r r r
pt(X7y) ||m pt(X7y) ||m pt(Xay)

) ) , to,xo fixed. *
rsy—o PY(rr > 1)’ ray—o Gr(xo,y)  ray—0 pl (x0,y) o *)
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Parabolic Martin kernel

For cones I' with apex at 0 Bogdan—Palmowski-Wang showed that the limits below exist:

r r r
pt(X7y) ||m pt(X7y) ||m pt(Xay)

_Pelxy) ,  to, xo fixed. .
y—o0 ]Py('Tr > 1) y—o0 Gr(Xo,_)/) y—0 Ptro (X07y) 00 ( )

Analogue of (x) for bounded Lipschitz sets: dissertation of G. Armstrong.
C*! sets: Fernandez-Real and Ros-Oton.

© K. Bogdan, Z. Palmowski, L. Wang. Yaglom limit for stable processes in cones. Electron. J. Probab. 23:1-19,
2018.

e G. Armstrong. Unimodal Lévy processes on bounded Lipschitz sets. Doctoral dissertation. University of
Oregon, 2018.

© X. Fernandez-Real, X. Ros-Oton. Boundary regularity for the fractional heat equation. Rev. Acad. Cienc. Ser.
A Math. 110:49-64, 2016.
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Parabolic Martin kernel

For cones I' with apex at 0 Bogdan—Palmowski-Wang showed that the limits below exist:

r r r
pt(X7y) ||m pt(X7y) ||m pt(Xay)

_Pelxy) ,  to, xo fixed. .
y—o0 ]Py(Tr > 1) y—o0 Gr(Xo,_)/) y—0 Ptro (X07y) 70 ( )

Analogue of (x) for bounded Lipschitz sets: dissertation of G. Armstrong.
C*! sets: Fernandez-Real and Ros-Oton.

© K. Bogdan, Z. Palmowski, L. Wang. Yaglom limit for stable processes in cones. Electron. J. Probab. 23:1-19,
2018.

e G. Armstrong. Unimodal Lévy processes on bounded Lipschitz sets. Doctoral dissertation. University of
Oregon, 2018.

© X. Fernandez-Real, X. Ros-Oton. Boundary regularity for the fractional heat equation. Rev. Acad. Cienc. Ser.
A Math. 110:49-64, 2016.

Definition (Parabolic Martin kernel)

D
. pr(x,y)
= lim ——= t D D.
ne,(x) Daly 0P (p > 1)’ >0, xeD, Qe
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Representation of caloric functions

Lemma
Fix Q € OD. Then, the function u(t,x) = n¢,q(x) is singular caloric in (0,00) x D. J
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Representation of caloric functions

Lemma

Fix Q € OD. Then, the function u(t,x) = n¢,q(x) is singular caloric in (0,00) x D.

Theorem (G. Armstrong, K. Bogdan, AR 2024)

Assume that u > 0 is caloric in [0, T) x D. Then there exists unique decomposition
u=R+S, such that R, S > 0, R is regular caloric and S is singular caloric. Furthermore,

R(t,x) = E®9u(X,,

(o,t)><D)'
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Representation of caloric functions

Lemma

Fix Q € OD. Then, the function u(t,x) = n¢,q(x) is singular caloric in (0,00) x D.

Theorem (G. Armstrong, K. Bogdan, AR 2024)

Assume that u > 0 is caloric in [0, T) x D. Then there exists unique decomposition
u=R+S, such that R, S > 0, R is regular caloric and S is singular caloric. Furthermore,

R(t,x) = E®9u(X,,

(o,t)><D)'

Theorem (GA-KB-AR 2024)

There exists unique Radon measure p on [0, T) x 0D such that

S(t,%) = /[ 1y M@0 (Q8). (M)

v

o G. Armstrong, K. Bogdan, A. Rutkowski. Caloric functions and boundary regularity for the fractional Laplacian
in Lipschitz open sets. Math. Ann. (online), 2024.
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No initial condition

Definition

We say that u > 0 is caloric in (0, T) x D if for all (t,x) € (0, T) x D,
u(t,x) = E"u(X..) < oo,

holds for every open G CC (0, T) x D such that (t,x) € G.

In the above definition we never integrate the values at t = 0.
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No initial condition

Definition

We say that u > 0 is caloric in (0, T) x D if for all (t,x) € (0, T) x D,
u(t,x) = E"u(X..) < oo,

holds for every open G CC (0, T) x D such that (t,x) € G.

In the above definition we never integrate the values at t = 0.

Theorem (GA-KB-AR 2024)

Assume that u is caloric on (0, T) X D and let g = u|pe. Then there exist unique Radon
measures p on [0, T) x OD and po on D such that for all0 <t < T and x € D,

t
u(t, %) = PP po(x) + / / g(s, 2)J°(t, %, 5, 2) dz ds + / ne_s.o(x) 1(dQds).
o Jbe [0,6)xdD

We also show that [, PY(7p > 1) puo(dy) < oc.

Artur Rutkowski (WUST) Fractional caloric functions Trondheim, 11.12.2024 16 / 29



Other related results

Elliptic setting:

o K. Bogdan, T. Kulczycki, M. Kwasnicki. Estimates and structure of a-harmonic functions. Probab. Th. Rel.
Fields 140:345-381, 2008.

© N. Abatangelo. Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian.
Discrete Contin. Dyn. Syst. 35(12):5555-5607, 2015.
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Other related results

Elliptic setting:

o K. Bogdan, T. Kulczycki, M. Kwasnicki. Estimates and structure of a-harmonic functions. Probab. Th. Rel.
Fields 140:345-381, 2008.

© N. Abatangelo. Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian.
Discrete Contin. Dyn. Syst. 35(12):5555-5607, 2015.

Parabolic setting:

0 B. Barrios, I. Peral, F. Soria, and E. Valdinoci. A Widder's type theorem for the heat equation with nonlocal
diffusion. Arch. Ration. Mech. Anal., 213(2):629-650, 2014.

Q H. Chan, D. Gémez-Castro, J.-L. Vazquez. Singular solutions for fractional parabolic boundary value problems.
Rev. Acad. Cienc. Ser. A Math. 116(4):159, 2022.
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Q H. Chan, D. Gémez-Castro, J.-L. Vazquez. Singular solutions for fractional parabolic boundary value problems.
Rev. Acad. Cienc. Ser. A Math. 116(4):159, 2022.

Chan-Gémez-Castro-Vazquez give a quite general framework. It includes (a class of)
singular solutions to (9; — A%/?)u = f in C* cylinders. Parabolic Martin kernel used
there is:

im PL0Y)
m 75 -
y—QeaD dp(y)*/?
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Relation between notions of solution to the fractional heat equation
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Relation to distributional solutions

Definition

We say that u > 0 is a distributional solution to (FHE), if for every ¢ € CZ°([0, T) x D)
and 0<s<t<T,

/qu(t,x)u(t,x) dx = /de(s7 x)u(s, x) dx + /:/Rd(& + A% (7, x)u(T, x) dx dT

and the integrals converge absolutely.
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Relation to distributional solutions

Definition

We say that u > 0 is a distributional solution to (FHE), if for every ¢ € CZ°([0, T) x D)
and 0<s<t<T,

/qu(t,x)u(t,x) dx = /D¢J(s7 x)u(s, x) dx + /:/Rd(& + A% (7, x)u(T, x) dx dT

and the integrals converge absolutely.

Theorem (AR, 2024)

Every caloric function is a distributional solution to (FHE) and every distributional
solution to (FHE) has a modification which is caloric.

Elliptic and related cases: Bogdan and Byczkowski, Chen.

© K. Bogdan, T. Byczkowski. Potential theory for the a-stable Schrédinger operator on bounded Lipschitz
domains. Studia Math., 133(1):53—92, 1999.

© Z.-Q. Chen. On notions of harmonicity. Proc. Amer. Math. Soc., 137(10):3497—3510, 2009.
o A. Rutkowski. Equivalence of definitions of fractional caloric functions. ArXiv:2410.16188, 2024.

Artur Rutkowski (WUST) Fractional caloric functions Trondheim, 11.12.2024 19 /29



Relation to classical solutions

A caloric function need not solve the fractional heat equation pointwise.

Example

Let

u(t, x) = Ne-1/2,0(x),  t>1/2, x €D,
’ 0, otherwise.

Then u is caloric in [0,00) x D but it is not even Lipschitz in t at t = 1/2.

Note that in the above example u = d;/2 ® dq.
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Relation to classical solutions

A caloric function need not solve the fractional heat equation pointwise.

Example

Let

u(t, x) = Ne-1/2,0(x),  t>1/2, x €D,
’ 0, otherwise.

Then u is caloric in [0,00) x D but it is not even Lipschitz in t at t = 1/2.

Note that in the above example u = d;/2 ® dq.

(Local) smoothness in space is not an issue here.

Lemma

If u is caloric in [0, T) x D, then u(t,-) is smooth in D for all t € (0, T). J
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Sufficient conditions for classical solutions

Goal: find possibly mild conditions on 1 and g under which a caloric function solves
(FHE) pointwise

Lemma (AR, 2024)
Let B, = B(0,r), B = B1. If x € By, then

1 5p(z)~ /2
s T ogi-E—a/z 0<t—s<T,zeB\B
|8tJB(t7 X, S, z)| 5 fflid_a(t—s)1 (2—a)/20) s \ s

— O<t—s<T, ze€Bs.

|z

Note that the singularity in time is of order (t — s)~* since (2 — a)/2a > 0.
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Sufficient conditions for classical solutions

Goal: find possibly mild conditions on 1 and g under which a caloric function solves
(FHE) pointwise

Lemma (AR, 2024)
Let B, = B(0,r), B = B1. If x € By, then

1 5p(z)~ /2
i Sy i ¢y -yl O<t—s<T,zeB B,
|<9tJB(t7 x,5,27)| < t—s | (t—s)1—(2—0a)/2 5\

Izl—d—a

0<t—s<T, zeB;.

t—s 7

Note that the singularity in time is of order (t — s)~* since (2 — a)/2a > 0.

Theorem (AR, 2024)

If u is caloric with g € CP™i((0, T), L*(1 Av)), and p € CP™((0, T), M(OD)), then u
is a classical solution to (FHE).
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Some comments

@ Recall that Dini continuity means that there exists a modulus of continuity w such

that L
/@dt<oo.
0 t
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@ Burch (1978) proved that the Dini continuity of the right-hand in the Poisson
problem for second-order operators is sufficient to get C? solutions. Note that 9 is
a first order operator.
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Some comments

@ Recall that Dini continuity means that there exists a modulus of continuity w such

that L
/@dt<oo.
0 t

@ Burch (1978) proved that the Dini continuity of the right-hand in the Poisson
problem for second-order operators is sufficient to get C? solutions. Note that 9 is
a first order operator.

o Dini-type conditions in the context of C? regularity for the nonlocal Poisson problem
were considered by Grzywny, Kassmann and Lezaj.

o The parabolic case is much more laborious than the elliptic case. For A®/2 the
Poisson kernel of a ball has an explicit formula and every a-harmonic function is
smooth.

C. C. Burch. The Dini condition and regularity of weak solutions of elliptic equations. J. Differential Equations,
30(3):308-323, 1978.

T. Grzywny, M. Kassmann, and L. Lezaj. Remarks on the nonlocal Dirichlet problem. Potential Anal.,
54(1):119-151, 2021.
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Boundary regularity for A®/? in Lipschitz sets
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Previously known results

@ Boundary Harnack principle in Lipschitz sets: Bogdan (1997).

@ Green function and expected exit time estimates: Chen—Song (1998), Jakubowski
(2002).

o Dirichlet heat kernel estimates:
Bogdan—Grzywny—Ryznar (2010): for Lipschitz D,

pP(x,y) = P*(p > t)pe(x, y)P (70 > t), 0<t<T, x,ycR"
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pP(x,y) = P*(p > t)pe(x, y)P (70 > t), 0<t<T, x,ycR"

Chen—Kim-Song (2010): for D of class C**,

a/2 a/2
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Previously known results

@ Boundary Harnack principle in Lipschitz sets: Bogdan (1997).
@ Green function and expected exit time estimates: Chen—Song (1998), Jakubowski
(2002).

o Dirichlet heat kernel estimates:
Bogdan—Grzywny—Ryznar (2010): for Lipschitz D,

ptD(X,y) ~P(p > t)pe(x,y)P (0 >t), 0<t<T, x,y€ RY.

Chen—Kim-Song (2010): for D of class C**,

a/2 a/2
ptD(x,y):j (1/\%)&(&”(1/\%), 0<t<T, x,y eR%.

In C* sets Gp and p? (t fixed) decay like 53/2(X) at OD. In Lipschitz sets the decay is
less explicit, also for harmonic functions.

© K. Bogdan, T. Grzywny, M. Ryznar. Heat kernel estimates for the fractional Laplacian with Dirichlet
conditions. Ann. Probab. 38(5):1901-1923, 2010.

e Z.-Q. Chen, P. Kim, R. Song. Heat kernel estimates for the Dirichlet fractional Laplacian. J. Eur. Math. Soc.
12:1307-1329, 2010.
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Previously known results

@ Ros-Oton-Serra (2014): if D is C**, GD[f]/5g/2(x) is Holder up to the boundary.

o Ros-Oton—Fernandez-Real (2016): if D is C**, PPuo/5g/2(X) is Holder up to the
boundary.
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Previously known results

@ Ros-Oton-Serra (2014): if D is C**, GD[f]/5g/2(x) is Holder up to the boundary.

o Ros-Oton—Fernandez-Real (2016): if D is C**, PtDuo/5g/2(X) is Holder up to the
boundary.

o PPuq decay with the same rate as harmonic functions: Bogdan—Palmowski-Wang
(2018), Armstrong (2019).

o Lian—Zhang-Li-Hong (2020): Hdlder decay at the boundary for Poisson equation.

@ Ding, Zhang (2024): Holder decay at the boundary for the fractional heat equation.

o X. Ros-Oton and J. Serra. The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J.
Math. Pures Appl. (9), 101(3):275-302, 2014.

e Y. Lian, K. Zhang, D. Li, and G. Hong. Boundary Hélder regularity for elliptic equations. J. Math. Pures Appl.
143:311-333, 2020.

© M. Ding and C. Zhang. A new unified method for boundary Halder continuity of parabolic equations. J. Geom.
Anal. 34(6):Paper No. 179, 39, 2024.
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Poisson equation in Lipschitz sets

Theorem (GA-KB-AR 2024)

Let r > 0. There exists po > 1 depending on d, «, r and the Lipschitz characteristics of
D such that for all p € [1, po) there exist constants C > 0 and u € (0, 1] depending only
ond,a,r,p and the Lipschitz characteristics of D such that

H Go(y,r)  Go(y's")
Gp(xo,y)  Gbp(xo,y’)

< Cly—y'|", y,y' € D\ B(x,r). (2)
LP(D)

v

Artur Rutkowski (WUST) Fractional caloric functions Trondheim, 11.12.2024 26 /29



Poisson equation in Lipschitz sets

Theorem (GA-KB-AR 2024)

Let r > 0. There exists po > 1 depending on d, «, r and the Lipschitz characteristics of
D such that for all p € [1, po) there exist constants C > 0 and u € (0, 1] depending only
ond,a,r,p and the Lipschitz characteristics of D such that

H Go(y,r)  Go(y's")
Gp(xo,y)  Gbp(xo,y’)

< Cly—y'|", y,y' € D\ B(x,r). (2)
LP(D)

v

Corollary

Let p > po/(po — 1) and let f € LP(D). Then, the function y — Gpf(y)/Gp(xo,y) is
Hélder continuous on D \ B(xo, r) with the Hélder constant and exponent depending
only on d,, p, r, the Lipschitz characteristics of D, and ||f||.s(p).

Remark: for the classical Poisson equation such result is known to be false if the
Lipschitz constant of D is too large.
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Fractional heat equation in Lipschitz sets

Theorem (GA-KB-AR 2024)

There exist C,~ > 0 depending only on d,«, T1, T2 and the Lipschitz characteristics of
D, such that

lne, (levipy £ C, 0<Ti<t< T xeD.
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Fractional heat equation in Lipschitz sets

Theorem (GA-KB-AR 2024)

There exist C,~ > 0 depending only on d,«, T1, T2 and the Lipschitz characteristics of
D, such that

lne, (levipy £ C, 0<Ti<t< T xeD.

Corollary

< Clluollapy, 0<Ti<t< Tz xeD.

s
cV(D)

]P)‘(TD > 1)

Note: similar results hold for Gp(xo, y) or pf(xo,y) in place of P¥(7p > 1).
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Some comments

@ Last result was essential to get the representation of singular caloric functions.
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Some comments

@ Last result was essential to get the representation of singular caloric functions.

o Regularity for PP ug follows from regularity of Gp[f]. We let p? = GpA*/2pP and
use the spectral decomposition.
e Formula (2) is the key result. Proof uses BHP, specific interior Harnack principle,

and estimates of Gp and the ratios.

@ Papers contain many useful estimates on p2, JP and their derivatives.
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Thank you for your attention!
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