Caloric functions for the fractional Laplacian in Lipschitz sets Based on a joint work with Gavin Armstrong and Krzysztof Bogdan

Artur Rutkowski

Wrocław University of Science and Technology

TMS Colloquium on PDEs Trondheim 11-12.12.2024

Artur Rutkowski (WUST)

Fractional caloric functions

Trondheim, 11.12.2024 1/29

Fractional Laplacian and α -stable processes

Let $\alpha \in (0, 2)$, $d \geq 2$, and let

$$\Delta^{\alpha/2}u(x):=-(-\Delta)^{\alpha/2}u(x):=c_{d,\alpha}\lim_{\varepsilon\to 0^+}\int_{B(0,\varepsilon)^c}\frac{u(x+y)-u(x)}{|y|^{d+\alpha}}\,dy,\quad x\in\mathbb{R}^d.$$

The formula makes sense, e.g., for $u \in C_c^2(\mathbb{R}^d)$. For those functions $\Delta^{\alpha/2}$ coincides with the generator of the semigroup P_t corresponding to the isotropic α -stable process X_t , given by the formula $P_t f(x) = \mathbb{E}^x f(X_t)$.

- A TEN A TEN

Fractional Laplacian and α -stable processes

Let $\alpha \in (0, 2)$, $d \geq 2$, and let

$$\Delta^{\alpha/2}u(x):=-(-\Delta)^{\alpha/2}u(x):=c_{d,\alpha}\lim_{\varepsilon\to 0^+}\int_{\mathcal{B}(0,\varepsilon)^c}\frac{u(x+y)-u(x)}{|y|^{d+\alpha}}\,dy,\quad x\in\mathbb{R}^d.$$

The formula makes sense, e.g., for $u \in C_c^2(\mathbb{R}^d)$. For those functions $\Delta^{\alpha/2}$ coincides with the generator of the semigroup P_t corresponding to the isotropic α -stable process X_t , given by the formula $P_t f(x) = \mathbb{E}^x f(X_t)$.

We have $P_t f(x) = p_t * f(x)$, where p_t is smooth and

$$p_t(x) \approx \left(t^{-d/\alpha} \wedge \frac{t}{|x|^{d+\alpha}}\right), \quad t > 0, \ x \in \mathbb{R}^d.$$

Fractional Laplacian and α -stable processes

Let $\alpha \in (0, 2)$, $d \geq 2$, and let

$$\Delta^{\alpha/2}u(x):=-(-\Delta)^{\alpha/2}u(x):=c_{d,\alpha}\lim_{\varepsilon\to 0^+}\int_{B(0,\varepsilon)^c}\frac{u(x+y)-u(x)}{|y|^{d+\alpha}}\,dy,\quad x\in\mathbb{R}^d.$$

The formula makes sense, e.g., for $u \in C_c^2(\mathbb{R}^d)$. For those functions $\Delta^{\alpha/2}$ coincides with the generator of the semigroup P_t corresponding to the isotropic α -stable process X_t , given by the formula $P_t f(x) = \mathbb{E}^x f(X_t)$.

We have $P_t f(x) = p_t * f(x)$, where p_t is smooth and

$$p_t(x) \approx \left(t^{-d/\alpha} \wedge \frac{t}{|x|^{d+\alpha}}\right), \quad t > 0, \ x \in \mathbb{R}^d.$$

Notation: $p_t(x, y) = p_t(x - y), \ \nu(x, y) = \nu(x - y) = c_{d,\alpha}|x - y|^{-d-\alpha}.$

Artur Rutkowski (WUST)

イロト イポト イラト イラト

Some equations involving the fractional Laplacian

The Dirichlet problem for the Poisson equation

$$\begin{cases} \Delta^{\alpha/2}u(x) = f(x), & x \in D, \\ u(z) = g(z), & z \in D^c. \end{cases}$$

For f = 0 we refer to u as an α -harmonic (or just harmonic) function.

(B)

< D > < A >

(DP)

Some equations involving the fractional Laplacian

The Dirichlet problem for the Poisson equation

$$\begin{cases} \Delta^{\alpha/2} u(x) = f(x), & x \in D, \\ u(z) = g(z), & z \in D^c. \end{cases}$$

For f = 0 we refer to u as an α -harmonic (or just harmonic) function.

Initial-exterior value problem for the fractional heat equation

$$\begin{cases} \partial_t u(t,x) = \Delta^{\alpha/2} u(t,x), & t \in (0,T), \ x \in D, \\ u(t,x) = g(t,x), & t \in (0,T), \ x \in D^c, \\ u(0,x) = u_0(x), & x \in D. \end{cases}$$
(FHE)

Solution to (FHE): caloric function.

4 E 5 4 E 5

Some equations involving the fractional Laplacian

The Dirichlet problem for the Poisson equation

$$\begin{cases} \Delta^{\alpha/2} u(x) = f(x), & x \in D, \\ u(z) = g(z), & z \in D^c. \end{cases}$$

For f = 0 we refer to u as an α -harmonic (or just harmonic) function.

Initial-exterior value problem for the fractional heat equation

$$\begin{cases} \partial_t u(t,x) = \Delta^{\alpha/2} u(t,x), & t \in (0,T), \ x \in D, \\ u(t,x) = g(t,x), & t \in (0,T), \ x \in D^c, \\ u(0,x) = u_0(x), & x \in D. \end{cases}$$
(FHE)

Solution to (FHE): caloric function.

Actual notioins of solutions will be discussed later.

(DP

Assumption: $d \ge 2$, D is nonempty, open, bounded and Lipschitz.

2

<ロト < 回ト < 回ト < 回ト < 回ト</p>

Assumption: $d \ge 2$, D is nonempty, open, bounded and Lipschitz.

Plan of the talk:

- Integral representations and structure of nonnegative solutions to (FHE).
- Relation between different notions of solution to (FHE).
- (Time permitting) Boundary regularity of solutions to (DP) and (FHE) with $g \equiv 0$.

Let

 $\tau_D = \inf\{t > 0 : X_t \notin D\}.$

2

<ロト < 回ト < 回ト < 回ト < 回ト</p>

Let

$$\tau_D = \inf\{t > 0 : X_t \notin D\}.$$

The **Dirichlet heat kernel** for D is

$$p_t^D(x,y) = p_t(x,y) - \mathbb{E}^x[p_{t-\tau_D}(X_{\tau_D},y); \ au_D < t], \quad t > 0, \ x,y \in \mathbb{R}^d.$$

Note: $p_t^D(x, y) = p_t^D(y, x)$ and $p_t^D(x, y) = 0$ if $x \notin D$ or $y \notin D$.

э

Let

$$\tau_D = \inf\{t > 0 : X_t \notin D\}.$$

The **Dirichlet heat kernel** for D is

$$p_t^D(x,y) = p_t(x,y) - \mathbb{E}^x[p_{t-\tau_D}(X_{\tau_D},y); \ au_D < t], \quad t > 0, \ x,y \in \mathbb{R}^d.$$

Note: $p_t^D(x, y) = p_t^D(y, x)$ and $p_t^D(x, y) = 0$ if $x \notin D$ or $y \notin D$.

Green function for $\Delta^{\alpha/2}$ in *D*:

$$G_D(x,y) = \int_0^\infty p_t^D(x,y) dt, \quad x,y \in \mathbb{R}^d. \qquad (G_D(x,x) = \infty, x \in D)$$

Note: $G_D(x, y) = G_D(y, x)$ and $G_D(x, y) = 0$ if $x \notin D$ or $y \notin D$.

Artur Rutkowski (WUST)

イロト 不得下 イヨト イヨト 一日

Let
$$P_t^D f(x) = \int_D p_t^D(x, y) f(y) dy$$
, $t > 0$, $x \in \mathbb{R}^d$.

2

<ロト < 回ト < 回ト < 回ト < 回ト</p>

Let
$$P_t^D f(x) = \int_D p_t^D(x, y) f(y) dy$$
, $t > 0$, $x \in \mathbb{R}^d$.

Lemma

For any $x \in D$ the function $v(y,t) = p_t^D(x,y)$ solves $(\partial_t - \Delta^{\alpha/2})v(t,y) = 0$ pointwise. Furthermore, $p_0^D(x,\cdot) = \delta_x$ in the sense that for every $f \in L^1$ we have $P_t^D f \xrightarrow[t \to 0^+]{} f$ in L^1 .

(日) (同) (日) (日)

Let
$$P_t^D f(x) = \int_D p_t^D(x, y) f(y) dy$$
, $t > 0$, $x \in \mathbb{R}^d$.

Lemma

For any $x \in D$ the function $v(y,t) = p_t^D(x,y)$ solves $(\partial_t - \Delta^{\alpha/2})v(t,y) = 0$ pointwise. Furthermore, $p_0^D(x,\cdot) = \delta_x$ in the sense that for every $f \in L^1$ we have $P_t^D f \xrightarrow[t \to 0^+]{} f$ in L^1 .

If u_0 is nice enough (e.g. L^2), then $P_t^D u_0$ solves (FHE) pointwise with $g \equiv 0$.

Let
$$P_t^D f(x) = \int_D p_t^D(x, y) f(y) \, dy$$
, $t > 0$, $x \in \mathbb{R}^d$.

Lemma

For any $x \in D$ the function $v(y,t) = p_t^D(x,y)$ solves $(\partial_t - \Delta^{\alpha/2})v(t,y) = 0$ pointwise. Furthermore, $p_0^D(x,\cdot) = \delta_x$ in the sense that for every $f \in L^1$ we have $P_t^D f \xrightarrow[t \to 0^+]{} f$ in L^1 .

If u_0 is nice enough (e.g. L^2), then $P_t^D u_0$ solves (FHE) pointwise with $g \equiv 0$.

Lemma

For any $x \in D$ the function $v(y) = G_D(x, y)$ solves $\Delta^{\alpha/2}v(y) = 0$ pointwise in $D \setminus \{x\}$.

A B A A B A

Let
$$P_t^D f(x) = \int_D p_t^D(x, y) f(y) \, dy$$
, $t > 0$, $x \in \mathbb{R}^d$.

Lemma

For any $x \in D$ the function $v(y,t) = p_t^D(x,y)$ solves $(\partial_t - \Delta^{\alpha/2})v(t,y) = 0$ pointwise. Furthermore, $p_0^D(x,\cdot) = \delta_x$ in the sense that for every $f \in L^1$ we have $P_t^D f \xrightarrow[t \to 0^+]{} f$ in L^1 .

If u_0 is nice enough (e.g. L^2), then $P_t^D u_0$ solves (FHE) pointwise with $g \equiv 0$.

Lemma

For any $x \in D$ the function $v(y) = G_D(x, y)$ solves $\Delta^{\alpha/2}v(y) = 0$ pointwise in $D \setminus \{x\}$.

Let $G_D[f](x) = \int_D G_D(x, y) f(y) \, dy$, $x \in \mathbb{R}^d$ (Green potential of f). If f is regular enough, then $G_D[f]$ solves (DP) pointwise with $g \equiv 0$.

6 / 29

Integral representations and structure of nonnegative caloric functions

$$\begin{cases} \partial_t u(t,x) = \Delta^{\alpha/2} u(t,x), & t \in (0,T), \ x \in D, \\ u(t,x) = g(t,x), & t \in (0,T), \ x \in D^c, \\ u(0,x) = u_0(x), & x \in D. \end{cases}$$

$$g(t,x) \qquad (0,T) \times D \qquad g(t,x)$$
$$u_0(x) \qquad t = 0$$

Artur Rutkowski (WUST)

Fractional caloric functions

Trondheim, 11.12.2024 8 / 29

2

<ロト < 回ト < 回ト < 回ト < 回ト</p>

(FHE)

$$\begin{cases} \partial_t u(t,x) = \Delta^{\alpha/2} u(t,x), & t \in (0,T), \ x \in D, \\ u(t,x) = g(t,x), & t \in (0,T), \ x \in D^c, \\ u(0,x) = u_0(x), & x \in D. \end{cases}$$

$$g(t,x) \qquad (0,T) \times D \qquad g(t,x)$$
$$u_0(x) \qquad t = 0$$

We will define solutions to (FHE) by means of a mean-value property with respect to the space-time α -stable process

$$\dot{X}_t = (-t, X_t).$$

Think of adding a drift of velocity -1 in the direction of a new coordinate.

Artur Rutkowski (WUST)

Fractional caloric functions

Trondheim, 11.12.2024 8 / 29

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(FHE)

Dirichlet problem and Markov processes

The general idea of solving (nonlocal) PDEs involving Markov operators goes back at least to Kakutani:

formally, if L is the generator of a Markov process Y_t , then a solution to

$$\begin{cases} Lu(x) = 0, & x \in D, \\ u(x) = g(x), & x \in D^c, \end{cases}$$

is given by $u(x) = \mathbb{E}^{x}[g(X_{\tau_{D}})].$

(日) (同) (日) (日)

Dirichlet problem and Markov processes

The general idea of solving (nonlocal) PDEs involving Markov operators goes back at least to Kakutani:

formally, if L is the generator of a Markov process Y_t , then a solution to

$$\begin{cases} Lu(x) = 0, & x \in D, \\ u(x) = g(x), & x \in D^c, \end{cases}$$

is given by $u(x) = \mathbb{E}^{x}[g(X_{\tau_{D}})].$

Example

$$L = \Delta \longrightarrow X_t - \text{Brownian motion} \longrightarrow Law(X_{\tau_D}) - \text{harmonic measure } (\partial D)$$

$$L = \Delta^{\alpha/2} \longrightarrow X_t - \alpha \text{-stable process} \longrightarrow Law(X_{\tau_D}) - \alpha \text{-harmonic measure } ((\overline{D})^c)$$

A B F A B F

4 D b 4 6 b

Dirichlet problem and Markov processes

The general idea of solving (nonlocal) PDEs involving Markov operators goes back at least to Kakutani:

formally, if L is the generator of a Markov process Y_t , then a solution to

$$\begin{cases} Lu(x) = 0, & x \in D, \\ u(x) = g(x), & x \in D^c, \end{cases}$$

is given by $u(x) = \mathbb{E}^{x}[g(X_{\tau_{D}})].$

Example

$$L = \Delta \longrightarrow X_t - \text{Brownian motion} \longrightarrow Law(X_{\tau_D}) - \text{harmonic measure} (\partial D)$$

$$L = \Delta^{\alpha/2} \longrightarrow X_t - \alpha \text{-stable process} \longrightarrow Law(X_{\tau_D}) - \alpha \text{-harmonic measure} ((\overline{D})^c)$$

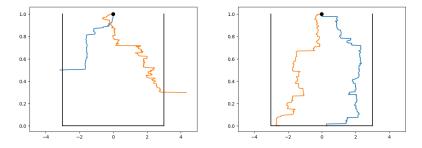
Lemma

On
$$C_b^{1,2}(\mathbb{R}^d)$$
, the generator of \dot{X} coincides with $-\partial_t + \Delta^{\alpha/2}$.

First exit from a cylinder

If $G = [0, t) \times U$ then \dot{X} starting at (t, x) can exit G in two ways depending on whether X leaves U before time t or not.

Figure: U = (-3, 3). On the left X leaves U before t = 1, on the right it survives until t = 1.

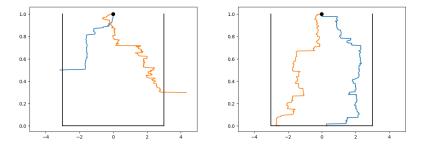


10/29

First exit from a cylinder

If $G = [0, t) \times U$ then \dot{X} starting at (t, x) can exit G in two ways depending on whether X leaves U before time t or not.

Figure: U = (-3, 3). On the left X leaves U before t = 1, on the right it survives until t = 1.



$$\begin{split} \mathbb{E}^{(t,x)} u(\dot{X}_{\tau_G}) &= \mathbb{E}^{(t,x)} [u(X_{\tau_G}); \ \tau_U \leq t] + \mathbb{E}^{(t,x)} [u(X_{\tau_G}); \ \tau_U > t] \\ &= \mathbb{E}^{(t,x)} [u(\tau_U, X_{\tau_U}); \ \tau_U \leq t] + P^U_t u_0(x). \end{split}$$

Artur Rutkowski (WUST)

Fractional caloric functions

Ikeda–Watanabe formula: let $I \subseteq [0, \infty)$ and $A \subseteq U^c$, I, A – Borel. Then,

$$\mathbb{P}^{\mathsf{x}}[\tau_U \in I; X_{\tau_U} \in A] = \int_I \int_A \int_U p_s^U(x, y) \nu(y, z) \, dy \, dz \, ds.$$

- 2

Ikeda–Watanabe formula: let $I \subseteq [0, \infty)$ and $A \subseteq U^c$, I, A – Borel. Then,

$$\mathbb{P}^{\mathsf{x}}[\tau_U \in I; X_{\tau_U} \in A] = \int_I \int_A \int_U p_s^U(x, y) \nu(y, z) \, dy \, dz \, ds.$$

Let J^U be the lateral Poisson kernel defined as

$$J^{U}(t, x, s, z) = \int_{U} p^{U}_{t-s}(x, y) \nu(y, z) \, dy, \quad s < t, \ x \in U, \ z \in U^{c}.$$

- 34

Ikeda–Watanabe formula: let $I \subseteq [0, \infty)$ and $A \subseteq U^c$, I, A – Borel. Then,

$$\mathbb{P}^{\mathsf{x}}[\tau_U \in I; X_{\tau_U} \in A] = \int_I \int_A \int_U p_s^U(x, y) \nu(y, z) \, dy \, dz \, ds.$$

Let J^U be the lateral Poisson kernel defined as

$$J^{U}(t, x, s, z) = \int_{U} p^{U}_{t-s}(x, y) \nu(y, z) \, dy, \quad s < t, \ x \in U, \ z \in U^{c}.$$

Then,

$$\mathbb{E}^{(t,x)}[u(\tau_U,X_{\tau_U}); \ \tau_U \leq t] = \int_0^t \int_{U^c} u(s,z) J^U(t,x,s,z) \, dz \, ds.$$

- 34

Ikeda–Watanabe formula: let $I \subseteq [0, \infty)$ and $A \subseteq U^c$, I, A – Borel. Then,

$$\mathbb{P}^{\mathsf{x}}[\tau_U \in I; X_{\tau_U} \in A] = \int_I \int_A \int_U p_s^U(x, y) \nu(y, z) \, dy \, dz \, ds.$$

Let J^U be the lateral Poisson kernel defined as

$$J^{U}(t, x, s, z) = \int_{U} p^{U}_{t-s}(x, y) \nu(y, z) \, dy, \quad s < t, \ x \in U, \ z \in U^{c}.$$

Then,

$$\mathbb{E}^{(t,x)}[u(\tau_U,X_{\tau_U}); \ \tau_U \leq t] = \int_0^t \int_{U^c} u(s,z) J^U(t,x,s,z) \, dz \, ds.$$

Overall,

$$\mathbb{E}^{(t,x)}u(\dot{X}_{\tau_{G}}) = \int_{U} p_{t}^{U}(x,y)u_{0}(y) \, dy + \int_{0}^{t} \int_{U^{c}} u(s,z)J^{U}(t,x,s,z) \, dz \, ds.$$

Artur Rutkowski (WUST)

э

Definition

• We say that $u \ge 0$ is caloric in $[0, T) \times D$ if for all $(t, x) \in (0, T) \times D$,

$$u(t,x) = \mathbb{E}^{(t,x)} u(\dot{X}_{\tau_G}) < \infty, \tag{1}$$

holds for every open $G \subset (0, T) \times D$ such that $(t, x) \in \overline{G}$.

(日) (同) (日) (日)

Definition

• We say that $u \ge 0$ is caloric in $[0, T) \times D$ if for all $(t, x) \in (0, T) \times D$,

$$u(t,x) = \mathbb{E}^{(t,x)} u(\dot{X}_{\tau_G}) < \infty, \tag{1}$$

holds for every open $G \subset (0, T) \times D$ such that $(t, x) \in \overline{G}$.

• If (1) holds for $(0, t) \times D$ in place of G, then we say that u is regular caloric.

4 D N 4 B N 4 B N 4 B N

Definition

• We say that $u \ge 0$ is caloric in $[0, T) \times D$ if for all $(t, x) \in (0, T) \times D$,

$$u(t,x) = \mathbb{E}^{(t,x)} u(\dot{X}_{\tau_G}) < \infty, \tag{1}$$

holds for every open $G \subset (0, T) \times D$ such that $(t, x) \in \overline{G}$.

- If (1) holds for $(0, t) \times D$ in place of G, then we say that u is regular caloric.
- If $u \equiv 0$ on the parabolic boundary

$$D^{p}=D\times \{0\}\cup D^{c}\times (0,T),$$

then we say that u is singular caloric.

- J. L. Doob. Classical potential theory and its probabilistic counterpart, 1984.
- 2.-Q. Chen, T. Kumagai. Heat kernel estimates for stable-like processes in d-sets. Stoch. Process. App. 108:27-62, 2003.

Definition

• We say that $u \ge 0$ is caloric in $[0, T) \times D$ if for all $(t, x) \in (0, T) \times D$,

$$u(t,x) = \mathbb{E}^{(t,x)} u(\dot{X}_{\tau_G}) < \infty, \tag{1}$$

holds for every open $G \subset (0, T) \times D$ such that $(t, x) \in \overline{G}$.

- If (1) holds for $(0, t) \times D$ in place of G, then we say that u is regular caloric.
- If $u \equiv 0$ on the parabolic boundary

$$D^{p} = D \times \{0\} \cup D^{c} \times (0, T),$$

then we say that *u* is **singular caloric**.

- J. L. Doob. Classical potential theory and its probabilistic counterpart, 1984.
- Z.-Q. Chen, T. Kumagai. Heat kernel estimates for stable-like processes in d-sets. Stoch. Process. App. 108:27-62, 2003.

Note: by virtue of the strong Markov property we can and will verify the mean-value property only on cylinders $(0, t) \times U$, where $U \subset D$ is Lipschitz.

Artur Rutkowski (WUST)

Fractional caloric functions

Beyond regular caloric functions

If *u* is regular caloric, then it is uniquely determined by *g* and u_0 :

$$u(t,x) = P_t^D u_0(x) + \int_0^t \int_{D^c} g(s,z) J^D(t,x,s,z) \, dz \, ds.$$

э

< D > < A >

Beyond regular caloric functions

If u is regular caloric, then it is uniquely determined by g and u_0 :

$$u(t,x) = P_t^D u_0(x) + \int_0^t \int_{D^c} g(s,z) J^D(t,x,s,z) \, dz \, ds.$$

Problem: are there caloric functions which are not regular? Put differently, is a caloric function uniquely determined by g and u_0 ?

- A TEN A TEN

4 D b 4 B b

Beyond regular caloric functions

If u is regular caloric, then it is uniquely determined by g and u_0 :

$$u(t,x) = P_t^D u_0(x) + \int_0^t \int_{D^c} g(s,z) J^D(t,x,s,z) \, dz \, ds.$$

Problem: are there caloric functions which are not regular? Put differently, is a caloric function uniquely determined by g and u_0 ?

Elliptic case $(\Delta^{\alpha/2}u = 0)$:

- Hmissi (1994): explicit example of a positive singular α -harmonic function.
- Bogdan (1999): full representation of nonnegative α-harmonic functions in Lipschitz domains. Singular harmonic functions are of the form ∫_{∂D} M^x_D(x, Q)µ(dQ) with

$$M_D^{\mathbf{xo}}(x,Q) = \lim_{D \ni y \to Q} \frac{G_D(x,y)}{G_D(x_0,y)}, \quad x \in D, \ Q \in \partial D. \quad (\text{Martin kernel})$$

- 6 K. Bogdan. Representation of α-harmonic functions in Lipschitz domains. Hiroshima Math. J. 29:227–243, 1999.
- F. Hmissi. Fonctions harmoniques pour les potentiels de Riesz sur la boule unite, Expo. Math. 12(3):281–288, 1994.

Parabolic Martin kernel

For cones Γ with apex at 0 Bogdan–Palmowski–Wang showed that the limits below exist:

$$\lim_{\Gamma \ni y \to 0} \frac{p_t^{\Gamma}(x, y)}{\mathbb{P}^y(\tau_{\Gamma} > 1)}, \quad \lim_{\Gamma \ni y \to 0} \frac{p_t^{\Gamma}(x, y)}{G_{\Gamma}(x_0, y)}, \quad \lim_{\Gamma \ni y \to 0} \frac{p_t^{\Gamma}(x, y)}{p_{t_0}^{\Gamma}(x_0, y)}, \quad t_0, x_0 \text{ fixed.}$$
(*)

3

イロト イボト イヨト イヨト

For cones Γ with apex at 0 Bogdan–Palmowski–Wang showed that the limits below exist:

$$\lim_{\Gamma \ni y \to 0} \frac{p_t^{\Gamma}(x, y)}{\mathbb{P}^y(\tau_{\Gamma} > 1)}, \quad \lim_{\Gamma \ni y \to 0} \frac{p_t^{\Gamma}(x, y)}{G_{\Gamma}(x_0, y)}, \quad \lim_{\Gamma \ni y \to 0} \frac{p_t^{\Gamma}(x, y)}{p_{t_0}^{\Gamma}(x_0, y)}, \quad t_0, x_0 \text{ fixed.}$$
(*)

Analogue of (*) for bounded Lipschitz sets: dissertation of G. Armstrong. $C^{1,1}$ sets: Fernández-Real and Ros-Oton.

- K. Bogdan, Z. Palmowski, L. Wang. Yaglom limit for stable processes in cones. Electron. J. Probab. 23:1–19, 2018.
- G. Armstrong. Unimodal Lévy processes on bounded Lipschitz sets. Doctoral dissertation. University of Oregon, 2018.
- X. Fernández-Real, X. Ros-Oton. Boundary regularity for the fractional heat equation. *Rev. Acad. Cienc. Ser.* A Math. 110:49–64, 2016.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For cones Γ with apex at 0 Bogdan–Palmowski–Wang showed that the limits below exist:

$$\lim_{\Gamma \ni y \to 0} \frac{p_t^{\Gamma}(x, y)}{\mathbb{P}^y(\tau_{\Gamma} > 1)}, \quad \lim_{\Gamma \ni y \to 0} \frac{p_t^{\Gamma}(x, y)}{G_{\Gamma}(x_0, y)}, \quad \lim_{\Gamma \ni y \to 0} \frac{p_t^{\Gamma}(x, y)}{p_{t_0}^{\Gamma}(x_0, y)}, \quad t_0, x_0 \text{ fixed.}$$
(*)

Analogue of (*) for bounded Lipschitz sets: dissertation of G. Armstrong. $C^{1,1}$ sets: Fernández-Real and Ros-Oton.

- K. Bogdan, Z. Palmowski, L. Wang. Yaglom limit for stable processes in cones. Electron. J. Probab. 23:1–19, 2018.
- G. Armstrong. Unimodal Lévy processes on bounded Lipschitz sets. Doctoral dissertation. University of Oregon, 2018.
- X. Fernández-Real, X. Ros-Oton. Boundary regularity for the fractional heat equation. *Rev. Acad. Cienc. Ser.* A Math. 110:49–64, 2016.

Definition (Parabolic Martin kernel)

$$\eta_{t,Q}(x) := \lim_{D \ni y \to Q} \frac{p_t^D(x,y)}{\mathbb{P}^y(\tau_D > 1)}, \quad t > 0, \ x \in D, \ Q \in \partial D.$$

《曰》 《問》 《臣》 《臣》

Representation of caloric functions

Lemma

Fix $Q \in \partial D$. Then, the function $u(t, x) = \eta_{t,Q}(x)$ is singular caloric in $(0, \infty) \times D$.

Image: A matrix

Representation of caloric functions

Lemma

Fix $Q \in \partial D$. Then, the function $u(t, x) = \eta_{t,Q}(x)$ is singular caloric in $(0, \infty) \times D$.

Theorem (G. Armstrong, K. Bogdan, AR 2024)

Assume that $u \ge 0$ is caloric in $[0, T) \times D$. Then there exists unique decomposition u = R + S, such that $R, S \ge 0$, R is regular caloric and S is singular caloric. Furthermore,

$$R(t,x) = \mathbb{E}^{(t,x)} u(\dot{X}_{\tau(\mathbf{0},t)\times D}).$$

E 5 4 E 5

Representation of caloric functions

Lemma

Fix $Q \in \partial D$. Then, the function $u(t, x) = \eta_{t,Q}(x)$ is singular caloric in $(0, \infty) \times D$.

Theorem (G. Armstrong, K. Bogdan, AR 2024)

Assume that $u \ge 0$ is caloric in $[0, T) \times D$. Then there exists unique decomposition u = R + S, such that $R, S \ge 0$, R is regular caloric and S is singular caloric. Furthermore,

$$R(t,x) = \mathbb{E}^{(t,x)} u(\dot{X}_{\tau_{(\mathbf{0},t)\times D}}).$$

Theorem (GA-KB-AR 2024)

There exists unique Radon measure μ on $[0, T) \times \partial D$ such that

$$S(t,x) = \int_{[0,t)\times\partial D} n_{t-s,Q}(x)\,\mu(dQds). \tag{M}$$

G. Armstrong, K. Bogdan, A. Rutkowski. Caloric functions and boundary regularity for the fractional Laplacian in Lipschitz open sets. *Math. Ann. (online)*, 2024.

イロト イヨト イヨト イヨト

No initial condition

Definition

We say that $u \ge 0$ is caloric in $(0, T) \times D$ if for all $(t, x) \in (0, T) \times D$,

$$u(t,x) = \mathbb{E}^{(t,x)}u(\dot{X}_{\tau_G}) < \infty,$$

holds for every open $G \subset (0, T) \times D$ such that $(t, x) \in \overline{G}$.

In the above definition we never integrate the values at t = 0.

(日) (同) (日) (日)

Definition

We say that $u \ge 0$ is caloric in $(0, T) \times D$ if for all $(t, x) \in (0, T) \times D$,

$$u(t,x) = \mathbb{E}^{(t,x)}u(\dot{X}_{\tau_G}) < \infty,$$

holds for every open $G \subset (0, T) \times D$ such that $(t, x) \in \overline{G}$.

In the above definition we never integrate the values at t = 0.

Theorem (GA-KB-AR 2024)

Assume that u is caloric on $(0, T) \times D$ and let $g = u|_{D^c}$. Then there exist unique Radon measures μ on $[0, T) \times \partial D$ and μ_0 on D such that for all 0 < t < T and $x \in D$,

$$u(t,x) = P_t^D \mu_0(x) + \int_0^t \int_{D^c} g(s,z) J^D(t,x,s,z) \, dz \, ds + \int_{[0,t) \times \partial D} n_{t-s,Q}(x) \, \mu(dQds).$$

We also show that $\int_D \mathbb{P}^y(\tau_D > 1) \, \mu_0(dy) < \infty$.

16 / 29

(日) (同) (日) (日)

Other related results

Elliptic setting:

- 6 K. Bogdan, T. Kulczycki, M. Kwaśnicki. Estimates and structure of α-harmonic functions. Probab. Th. Rel. Fields 140:345–381, 2008.
- N. Abatangelo. Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian. Discrete Contin. Dyn. Syst. 35(12):5555-5607, 2015.

イロト イボト イヨト イヨト

Other related results

Elliptic setting:

- 6 K. Bogdan, T. Kulczycki, M. Kwaśnicki. Estimates and structure of α-harmonic functions. Probab. Th. Rel. Fields 140:345–381, 2008.
- N. Abatangelo. Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian. Discrete Contin. Dyn. Syst. 35(12):5555-5607, 2015.

Parabolic setting:

- B. Barrios, I. Peral, F. Soria, and E. Valdinoci. A Widder's type theorem for the heat equation with nonlocal diffusion. Arch. Ration. Mech. Anal., 213(2):629–650, 2014.
- 9 H. Chan, D. Gómez-Castro, J.-L. Vázquez. Singular solutions for fractional parabolic boundary value problems. Rev. Acad. Cienc. Ser. A Math. 116(4):159, 2022.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Other related results

Elliptic setting:

- 6 K. Bogdan, T. Kulczycki, M. Kwaśnicki. Estimates and structure of α-harmonic functions. Probab. Th. Rel. Fields 140:345–381, 2008.
- N. Abatangelo. Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian. Discrete Contin. Dyn. Syst. 35(12):5555-5607, 2015.

Parabolic setting:

- B. Barrios, I. Peral, F. Soria, and E. Valdinoci. A Widder's type theorem for the heat equation with nonlocal diffusion. Arch. Ration. Mech. Anal., 213(2):629–650, 2014.
- 9 H. Chan, D. Gómez-Castro, J.-L. Vázquez. Singular solutions for fractional parabolic boundary value problems. Rev. Acad. Cienc. Ser. A Math. 116(4):159, 2022.

Chan–Gómez-Castro–Vázquez give a quite general framework. It includes (a class of) singular solutions to $(\partial_t - \Delta^{\alpha/2})u = f$ in $C^{1,1}$ cylinders. Parabolic Martin kernel used there is:

$$\lim_{y\to Q\in\partial D}\frac{p_t^D(x,y)}{\delta_D(y)^{\alpha/2}}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Relation between notions of solution to the fractional heat equation

Relation to distributional solutions

Definition

We say that $u \ge 0$ is a distributional solution to (FHE), if for every $\phi \in C_c^{\infty}([0, T) \times D)$ and $0 \le s < t < T$,

$$\int_D \phi(t,x) u(t,x) \, dx = \int_D \phi(s,x) u(s,x) \, dx + \int_s^t \int_{\mathbb{R}^d} (\partial_t + \Delta^{\alpha/2}) \phi(\tau,x) u(\tau,x) \, dx \, d\tau$$

and the integrals converge absolutely.

4 3 5 4 3 5 5

4 D b 4 A b

Relation to distributional solutions

Definition

We say that $u \ge 0$ is a distributional solution to (FHE), if for every $\phi \in C_c^{\infty}([0, T) \times D)$ and $0 \le s < t < T$,

$$\int_D \phi(t,x) u(t,x) \, dx = \int_D \phi(s,x) u(s,x) \, dx + \int_s^t \int_{\mathbb{R}^d} (\partial_t + \Delta^{\alpha/2}) \phi(\tau,x) u(\tau,x) \, dx \, d\tau$$

and the integrals converge absolutely.

Theorem (AR, 2024)

Every caloric function is a distributional solution to (FHE) and every distributional solution to (FHE) has a modification which is caloric.

Relation to distributional solutions

Definition

We say that $u \ge 0$ is a distributional solution to (FHE), if for every $\phi \in C_c^{\infty}([0, T) \times D)$ and $0 \le s < t < T$,

$$\int_D \phi(t,x) u(t,x) \, dx = \int_D \phi(s,x) u(s,x) \, dx + \int_s^t \int_{\mathbb{R}^d} (\partial_t + \Delta^{\alpha/2}) \phi(\tau,x) u(\tau,x) \, dx \, d\tau$$

and the integrals converge absolutely.

Theorem (AR, 2024)

Every caloric function is a distributional solution to (FHE) and every distributional solution to (FHE) has a modification which is caloric.

Elliptic and related cases: Bogdan and Byczkowski, Chen.

- 6 K. Bogdan, T. Byczkowski. Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains. Studia Math., 133(1):53—92, 1999.
- 2 Z.-Q. Chen. On notions of harmonicity. Proc. Amer. Math. Soc., 137(10):3497-3510, 2009.
- 3 A. Rutkowski. Equivalence of definitions of fractional caloric functions. ArXiv:2410.16188, 2024.

イロト イポト イモト イモト

Relation to classical solutions

A caloric function need not solve the fractional heat equation pointwise.

Example

Let

$$u(t,x) = \begin{cases} \eta_{t-1/2,Q}(x), & t > 1/2, x \in D, \\ 0, & \text{otherwise.} \end{cases}$$

Then u is caloric in $[0,\infty) \times D$ but it is not even Lipschitz in t at t = 1/2.

Note that in the above example $\mu = \delta_{1/2} \otimes \delta_Q$.

(日) (同) (日) (日)

Relation to classical solutions

A caloric function need not solve the fractional heat equation pointwise.

Example

Let

$$u(t,x) = \begin{cases} \eta_{t-1/2,Q}(x), & t > 1/2, x \in D, \\ 0, & \text{otherwise.} \end{cases}$$

Then u is caloric in $[0,\infty) \times D$ but it is not even Lipschitz in t at t = 1/2.

Note that in the above example $\mu = \delta_{1/2} \otimes \delta_Q$.

(Local) smoothness in space is not an issue here.

Lemma

If u is caloric in $[0, T) \times D$, then $u(t, \cdot)$ is smooth in D for all $t \in (0, T)$.

(日) (同) (日) (日)

Sufficient conditions for classical solutions

Goal: find possibly mild conditions on μ and g under which a caloric function solves (FHE) pointwise

Lemma (AR, 2024) Let $B_r = B(0, r), B = B_1.$ If $x \in B_{1/2}$, then $|\partial_t J^B(t, x, s, z)| \lesssim \begin{cases} \frac{1}{t-s} + \frac{\delta_B(z)^{-\alpha/2}}{(t-s)^{1-(2-\alpha)/2\alpha}}, & 0 < t-s < T, \ z \in B_2 \setminus B, \\ \frac{|z|^{-d-\alpha}}{t-s}, & 0 < t-s < T, \ z \in B_2^c. \end{cases}$

Note that the singularity in time is of order $(t - s)^{-1}$ since $(2 - \alpha)/2\alpha > 0$.

A B A A B A

Sufficient conditions for classical solutions

Goal: find possibly mild conditions on μ and g under which a caloric function solves (FHE) pointwise

Lemma (AR, 2024) Let $B_r = B(0, r), B = B_1$. If $x \in B_{1/2}$, then $|\partial_t J^B(t, x, s, z)| \lesssim \begin{cases} \frac{1}{t-s} + \frac{\delta_B(z)^{-\alpha/2}}{(t-s)^{1-(2-\alpha)/2\alpha}}, & 0 < t-s < T, \ z \in B_2 \setminus B, \\ \frac{|z|^{-d-\alpha}}{t-s}, & 0 < t-s < T, \ z \in B_2^c. \end{cases}$

Note that the singularity in time is of order $(t - s)^{-1}$ since $(2 - \alpha)/2\alpha > 0$.

Theorem (AR, 2024)

If u is caloric with $g \in C^{Dini}((0, T), L^1(1 \wedge \nu))$, and $\mu \in C^{Dini}((0, T), \mathcal{M}(\partial D))$, then u is a classical solution to (FHE).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 \bullet Recall that Dini continuity means that there exists a modulus of continuity ω such that

$$\int_0^1 \frac{\omega(t)}{t} \, dt < \infty.$$

3

イロト イボト イヨト イヨト

• Recall that Dini continuity means that there exists a modulus of continuity ω such that

$$\int_0^1 \frac{\omega(t)}{t}\,dt < \infty.$$

• Burch (1978) proved that the Dini continuity of the right-hand in the Poisson problem for second-order operators is sufficient to get C^2 solutions. Note that ∂_t is a first order operator.

イロト イポト イラト イラト

• Recall that Dini continuity means that there exists a modulus of continuity ω such that

$$\int_0^1 \frac{\omega(t)}{t}\,dt < \infty.$$

- Burch (1978) proved that the Dini continuity of the right-hand in the Poisson problem for second-order operators is sufficient to get C^2 solutions. Note that ∂_t is a first order operator.
- Dini-type conditions in the context of C^2 regularity for the nonlocal Poisson problem were considered by Grzywny, Kassmann and Leżaj.

イロト イポト イラト イラト

• Recall that Dini continuity means that there exists a modulus of continuity ω such that

$$\int_0^1 \frac{\omega(t)}{t} \, dt < \infty.$$

- Burch (1978) proved that the Dini continuity of the right-hand in the Poisson problem for second-order operators is sufficient to get C^2 solutions. Note that ∂_t is a first order operator.
- Dini-type conditions in the context of C^2 regularity for the nonlocal Poisson problem were considered by Grzywny, Kassmann and Leżaj.
- The parabolic case is much more laborious than the elliptic case. For $\Delta^{\alpha/2}$ the Poisson kernel of a ball has an explicit formula and every α -harmonic function is smooth.
- C. C. Burch. The Dini condition and regularity of weak solutions of elliptic equations. J. Differential Equations, 30(3):308–323, 1978.
- T. Grzywny, M. Kassmann, and Ł. Leżaj. Remarks on the nonlocal Dirichlet problem. Potential Anal., 54(1):119–151, 2021.

イロト イボト イヨト イヨト

Boundary regularity for $\Delta^{\alpha/2}$ in Lipschitz sets

Image: A matrix

э

- Boundary Harnack principle in Lipschitz sets: Bogdan (1997).
- Green function and expected exit time estimates: Chen–Song (1998), Jakubowski (2002).
- Dirichlet heat kernel estimates: Bogdan-Grzywny-Ryznar (2010): for Lipschitz *D*,

$$p_t^D(x,y) pprox \mathbb{P}^{^{ extsf{w}}}(au_D > t) p_t(x,y) \mathbb{P}^{^{ extsf{w}}}(au_D > t), \quad 0 < t < T, \; x,y \in \mathbb{R}^d$$

4 3 5 4 3 5 5

4 D b 4 6 b

- Boundary Harnack principle in Lipschitz sets: Bogdan (1997).
- Green function and expected exit time estimates: Chen–Song (1998), Jakubowski (2002).
- Dirichlet heat kernel estimates: Bogdan-Grzywny-Ryznar (2010): for Lipschitz *D*,

$$p^D_t(x,y) pprox \mathbb{P}^x(au_D > t) p_t(x,y) \mathbb{P}^y(au_D > t), \quad 0 < t < T, \; x,y \in \mathbb{R}^d.$$

Chen-Kim-Song (2010): for D of class $C^{1,1}$,

$$p_t^D(x,y) pprox \left(1 \wedge rac{\delta_D(x)^{lpha/2}}{\sqrt{t}}
ight) p_t(x,y) \left(1 \wedge rac{\delta_D(y)^{lpha/2}}{\sqrt{t}}
ight), \quad 0 < t < T, \; x,y \in \mathbb{R}^d.$$

4 3 5 4 3 5 5

- Boundary Harnack principle in Lipschitz sets: Bogdan (1997).
- Green function and expected exit time estimates: Chen–Song (1998), Jakubowski (2002).
- Dirichlet heat kernel estimates: Bogdan–Grzywny–Ryznar (2010): for Lipschitz *D*,

$$p_t^D(x,y) pprox \mathbb{P}^x(au_D > t) p_t(x,y) \mathbb{P}^y(au_D > t), \quad 0 < t < T, \ x,y \in \mathbb{R}^d$$

Chen-Kim-Song (2010): for D of class $C^{1,1}$,

$$p_t^D(x,y) pprox \left(1 \wedge rac{\delta_D(x)^{lpha/2}}{\sqrt{t}}
ight) p_t(x,y) \left(1 \wedge rac{\delta_D(y)^{lpha/2}}{\sqrt{t}}
ight), \quad 0 < t < T, \; x,y \in \mathbb{R}^d.$$

In $C^{1,1}$ sets G_D and p_t^D (*t* fixed) decay like $\delta_D^{\alpha/2}(x)$ at ∂D . In Lipschitz sets the decay is less explicit, also for harmonic functions.

- K. Bogdan, T. Grzywny, M. Ryznar. Heat kernel estimates for the fractional Laplacian with Dirichlet conditions. Ann. Probab. 38(5):1901–1923, 2010.
- Z.-Q. Chen, P. Kim, R. Song. Heat kernel estimates for the Dirichlet fractional Laplacian. J. Eur. Math. Soc. 12:1307–1329, 2010.

- Ros-Oton-Serra (2014): if D is $C^{1,1}$, $G_D[f]/\delta_D^{\alpha/2}(x)$ is Hölder up to the boundary.
- Ros-Oton-Fernández-Real (2016): if D is C^{1,1}, P^D_t u₀/δ^{α/2}_D(x) is Hölder up to the boundary.

1 E N 1 E N

A D > <
 A P >
 A

- Ros-Oton–Serra (2014): if D is $C^{1,1}$, $G_D[f]/\delta_D^{\alpha/2}(x)$ is Hölder up to the boundary.
- Ros-Oton–Fernández-Real (2016): if D is C^{1,1}, P^D_t u₀/δ^{α/2}_D(x) is Hölder up to the boundary.
- *P*^D_t u₀ decay with the same rate as harmonic functions: Bogdan–Palmowski–Wang (2018), Armstrong (2019).

4 3 5 4 3 5 5

- Ros-Oton–Serra (2014): if D is $C^{1,1}$, $G_D[f]/\delta_D^{\alpha/2}(x)$ is Hölder up to the boundary.
- Ros-Oton-Fernández-Real (2016): if D is C^{1,1}, P^D_t u₀/δ^{α/2}_D(x) is Hölder up to the boundary.
- *P*^D_t u₀ decay with the same rate as harmonic functions: Bogdan–Palmowski–Wang (2018), Armstrong (2019).
- Lian-Zhang-Li-Hong (2020): Hölder decay at the boundary for Poisson equation.

A B A A B A

- Ros-Oton–Serra (2014): if D is $C^{1,1}$, $G_D[f]/\delta_D^{\alpha/2}(x)$ is Hölder up to the boundary.
- Ros-Oton-Fernández-Real (2016): if D is C^{1,1}, P^D_t u₀/δ^{α/2}_D(x) is Hölder up to the boundary.
- *P*^D_t u₀ decay with the same rate as harmonic functions: Bogdan–Palmowski–Wang (2018), Armstrong (2019).
- Lian-Zhang-Li-Hong (2020): Hölder decay at the boundary for Poisson equation.
- Ding, Zhang (2024): Hölder decay at the boundary for the fractional heat equation.
- X. Ros-Oton and J. Serra. The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. (9), 101(3):275–302, 2014.
- Y. Lian, K. Zhang, D. Li, and G. Hong. Boundary Hölder regularity for elliptic equations. J. Math. Pures Appl. 143:311-333, 2020.
- M. Ding and C. Zhang. A new unified method for boundary Hölder continuity of parabolic equations. J. Geom. Anal. 34(6):Paper No. 179, 39, 2024.

25 / 29

イロト イボト イヨト イヨト

Poisson equation in Lipschitz sets

Theorem (GA-KB-AR 2024)

Let r > 0. There exists $p_0 > 1$ depending on d, α, r and the Lipschitz characteristics of D such that for all $p \in [1, p_0)$ there exist constants C > 0 and $\mu \in (0, 1]$ depending only on d, α, r, p and the Lipschitz characteristics of D such that

$$\left\|\frac{G_D(y,\cdot)}{G_D(x_0,y)}-\frac{G_D(y',\cdot)}{G_D(x_0,y')}\right\|_{L^p(D)} \le C|y-y'|^{\mu}, \quad y,y'\in D\setminus B(x_0,r).$$
(2)

- A TEN A TEN

Poisson equation in Lipschitz sets

Theorem (GA-KB-AR 2024)

Let r > 0. There exists $p_0 > 1$ depending on d, α, r and the Lipschitz characteristics of D such that for all $p \in [1, p_0)$ there exist constants C > 0 and $\mu \in (0, 1]$ depending only on d, α, r, p and the Lipschitz characteristics of D such that

$$\left\|\frac{G_D(y,\cdot)}{G_D(x_0,y)}-\frac{G_D(y',\cdot)}{G_D(x_0,y')}\right\|_{L^p(D)} \le C|y-y'|^{\mu}, \quad y,y'\in D\setminus B(x_0,r).$$
(2)

Corollary

Let $p > p_0/(p_0 - 1)$ and let $f \in L^p(D)$. Then, the function $y \mapsto G_D f(y)/G_D(x_0, y)$ is Hölder continuous on $D \setminus B(x_0, r)$ with the Hölder constant and exponent depending only on d, α, p, r , the Lipschitz characteristics of D, and $\|f\|_{L^p(D)}$.

Remark: for the classical Poisson equation such result is known to be false if the Lipschitz constant of *D* is too large.

Artur Rutkowski (WUST)

26 / 29

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (GA-KB-AR 2024)

There exist $C, \gamma > 0$ depending only on d, α, T_1, T_2 and the Lipschitz characteristics of D, such that

 $\|n_{t,\cdot}(x)\|_{C^{\gamma}(D)} \leq C, \quad 0 < T_1 < t < T_2, \ x \in D.$

4 3 5 4 3 5 5

Image: A matrix

Theorem (GA-KB-AR 2024)

There exist $C, \gamma > 0$ depending only on d, α, T_1, T_2 and the Lipschitz characteristics of D, such that

$$\|n_{t,\cdot}(x)\|_{C^{\gamma}(D)} \leq C, \quad 0 < T_1 < t < T_2, \ x \in D.$$

Corollary

$$\left\|\frac{\mathcal{P}_t^D u_0(\cdot)}{\mathbb{P}^{\cdot}(\tau_D > 1)}\right\|_{C^{\gamma}(D)} \leq C \|u_0\|_{L^1(D)}, \quad 0 < T_1 < t < T_2, \ x \in D.$$

Note: similar results hold for $G_D(x_0, y)$ or $p_{t_0}^D(x_0, y)$ in place of $\mathbb{P}^y(\tau_D > 1)$.

Artur Rutkowski (WUST)

4 3 5 4 3

• Last result was essential to get the representation of singular caloric functions.

3

イロト イポト イヨト イヨト

- Last result was essential to get the representation of singular caloric functions.
- Regularity for $P_t^D u_0$ follows from regularity of $G_D[f]$. We let $p_t^D = G_D \Delta^{\alpha/2} p_t^D$ and use the spectral decomposition.

イロト イボト イヨト イヨト

- Last result was essential to get the representation of singular caloric functions.
- Regularity for $P_t^D u_0$ follows from regularity of $G_D[f]$. We let $p_t^D = G_D \Delta^{\alpha/2} p_t^D$ and use the spectral decomposition.
- Formula (2) is the key result. Proof uses BHP, specific interior Harnack principle, and estimates of G_D and the ratios.

4 D K 4 B K 4 B K 4 B K

- Last result was essential to get the representation of singular caloric functions.
- Regularity for $P_t^D u_0$ follows from regularity of $G_D[f]$. We let $p_t^D = G_D \Delta^{\alpha/2} p_t^D$ and use the spectral decomposition.
- Formula (2) is the key result. Proof uses BHP, specific interior Harnack principle, and estimates of G_D and the ratios.
- Papers contain many useful estimates on p_t^D , J^D and their derivatives.

イロト イボト イヨト イヨト

Thank you for your attention!

Image: A matrix

2