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Fractional Laplacian and α-stable processes

Let α ∈ (0, 2), d ≥ 2, and let

∆α/2u(x) := −(−∆)α/2u(x) := cd,α lim
ε→0+

∫
B(0,ε)c

u(x + y)− u(x)

|y |d+α
dy , x ∈ Rd .

The formula makes sense, e.g., for u ∈ C 2
c (Rd). For those functions ∆α/2 coincides with

the generator of the semigroup Pt corresponding to the isotropic α-stable process Xt ,
given by the formula Pt f (x) = Ex f (Xt).

We have Pt f (x) = pt ∗ f (x), where pt is smooth and

pt(x) ≈
(
t−d/α ∧ t

|x |d+α

)
, t > 0, x ∈ Rd .

Notation: pt(x , y) = pt(x − y), ν(x , y) = ν(x − y) = cd,α|x − y |−d−α.
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Some equations involving the fractional Laplacian

The Dirichlet problem for the Poisson equation{
∆α/2u(x) = f (x), x ∈ D,

u(z) = g(z), z ∈ Dc .
(DP)

For f = 0 we refer to u as an α-harmonic (or just harmonic) function.

Initial-exterior value problem for the fractional heat equation
∂tu(t, x) = ∆α/2u(t, x), t ∈ (0,T ), x ∈ D,

u(t, x) = g(t, x), t ∈ (0,T ), x ∈ Dc ,

u(0, x) = u0(x), x ∈ D.

(FHE)

Solution to (FHE): caloric function.

Actual notioins of solutions will be discussed later.
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Goals

Assumption: d ≥ 2, D is nonempty, open, bounded and Lipschitz.

Plan of the talk:

Integral representations and structure of nonnegative solutions to (FHE).

Relation between different notions of solution to (FHE).

(Time permitting) Boundary regularity of solutions to (DP) and (FHE) with g ≡ 0.
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Fundamental solutions

Let
τD = inf{t > 0 : Xt /∈ D}.

The Dirichlet heat kernel for D is

pD
t (x , y) = pt(x , y)− Ex [pt−τD (XτD , y); τD < t], t > 0, x , y ∈ Rd .

Note: pD
t (x , y) = pD

t (y , x) and pD
t (x , y) = 0 if x /∈ D or y /∈ D.

Green function for ∆α/2 in D:

GD(x , y) =

∫ ∞

0
pD
t (x , y) dt, x , y ∈ Rd . (GD(x , x) = ∞, x ∈ D)

Note: GD(x , y) = GD(y , x) and GD(x , y) = 0 if x /∈ D or y /∈ D.
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Fundamental solutions

Let PD
t f (x) =

∫
D
pD
t (x , y)f (y) dy , t > 0, x ∈ Rd .

Lemma

For any x ∈ D the function v(y , t) = pD
t (x , y) solves (∂t −∆α/2)v(t, y) = 0 pointwise.

Furthermore, pD
0 (x , ·) = δx in the sense that for every f ∈ L1 we have PD

t f −→
t→0+

f in L1.

If u0 is nice enough (e.g. L2), then PD
t u0 solves (FHE) pointwise with g ≡ 0.

Lemma

For any x ∈ D the function v(y) = GD(x , y) solves ∆α/2v(y) = 0 pointwise in D \ {x}.

Let GD [f ](x) =
∫
D
GD(x , y)f (y) dy , x ∈ Rd (Green potential of f ).

If f is regular enough, then GD [f ] solves (DP) pointwise with g ≡ 0.

Artur Rutkowski (WUST) Fractional caloric functions Trondheim, 11.12.2024 6 / 29



Fundamental solutions

Let PD
t f (x) =

∫
D
pD
t (x , y)f (y) dy , t > 0, x ∈ Rd .

Lemma

For any x ∈ D the function v(y , t) = pD
t (x , y) solves (∂t −∆α/2)v(t, y) = 0 pointwise.

Furthermore, pD
0 (x , ·) = δx in the sense that for every f ∈ L1 we have PD

t f −→
t→0+

f in L1.

If u0 is nice enough (e.g. L2), then PD
t u0 solves (FHE) pointwise with g ≡ 0.

Lemma

For any x ∈ D the function v(y) = GD(x , y) solves ∆α/2v(y) = 0 pointwise in D \ {x}.

Let GD [f ](x) =
∫
D
GD(x , y)f (y) dy , x ∈ Rd (Green potential of f ).

If f is regular enough, then GD [f ] solves (DP) pointwise with g ≡ 0.

Artur Rutkowski (WUST) Fractional caloric functions Trondheim, 11.12.2024 6 / 29



Fundamental solutions

Let PD
t f (x) =

∫
D
pD
t (x , y)f (y) dy , t > 0, x ∈ Rd .

Lemma

For any x ∈ D the function v(y , t) = pD
t (x , y) solves (∂t −∆α/2)v(t, y) = 0 pointwise.

Furthermore, pD
0 (x , ·) = δx in the sense that for every f ∈ L1 we have PD

t f −→
t→0+

f in L1.

If u0 is nice enough (e.g. L2), then PD
t u0 solves (FHE) pointwise with g ≡ 0.

Lemma

For any x ∈ D the function v(y) = GD(x , y) solves ∆α/2v(y) = 0 pointwise in D \ {x}.

Let GD [f ](x) =
∫
D
GD(x , y)f (y) dy , x ∈ Rd (Green potential of f ).

If f is regular enough, then GD [f ] solves (DP) pointwise with g ≡ 0.

Artur Rutkowski (WUST) Fractional caloric functions Trondheim, 11.12.2024 6 / 29



Fundamental solutions

Let PD
t f (x) =

∫
D
pD
t (x , y)f (y) dy , t > 0, x ∈ Rd .

Lemma

For any x ∈ D the function v(y , t) = pD
t (x , y) solves (∂t −∆α/2)v(t, y) = 0 pointwise.

Furthermore, pD
0 (x , ·) = δx in the sense that for every f ∈ L1 we have PD

t f −→
t→0+

f in L1.

If u0 is nice enough (e.g. L2), then PD
t u0 solves (FHE) pointwise with g ≡ 0.

Lemma

For any x ∈ D the function v(y) = GD(x , y) solves ∆α/2v(y) = 0 pointwise in D \ {x}.

Let GD [f ](x) =
∫
D
GD(x , y)f (y) dy , x ∈ Rd (Green potential of f ).

If f is regular enough, then GD [f ] solves (DP) pointwise with g ≡ 0.

Artur Rutkowski (WUST) Fractional caloric functions Trondheim, 11.12.2024 6 / 29



Fundamental solutions

Let PD
t f (x) =

∫
D
pD
t (x , y)f (y) dy , t > 0, x ∈ Rd .

Lemma

For any x ∈ D the function v(y , t) = pD
t (x , y) solves (∂t −∆α/2)v(t, y) = 0 pointwise.

Furthermore, pD
0 (x , ·) = δx in the sense that for every f ∈ L1 we have PD

t f −→
t→0+

f in L1.

If u0 is nice enough (e.g. L2), then PD
t u0 solves (FHE) pointwise with g ≡ 0.

Lemma

For any x ∈ D the function v(y) = GD(x , y) solves ∆α/2v(y) = 0 pointwise in D \ {x}.

Let GD [f ](x) =
∫
D
GD(x , y)f (y) dy , x ∈ Rd (Green potential of f ).

If f is regular enough, then GD [f ] solves (DP) pointwise with g ≡ 0.

Artur Rutkowski (WUST) Fractional caloric functions Trondheim, 11.12.2024 6 / 29



Integral representations and structure of nonnegative caloric functions
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Caloric functions in cylinders


∂tu(t, x) = ∆α/2u(t, x), t ∈ (0,T ), x ∈ D,

u(t, x) = g(t, x), t ∈ (0,T ), x ∈ Dc ,

u(0, x) = u0(x), x ∈ D.

(FHE)

(0,T )× Dg(t, x) g(t, x)

u0(x) t = 0

We will define solutions to (FHE) by means of a mean-value property with respect to the
space-time α-stable process

Ẋt = (−t,Xt).

Think of adding a drift of velocity −1 in the direction of a new coordinate.

Artur Rutkowski (WUST) Fractional caloric functions Trondheim, 11.12.2024 8 / 29



Caloric functions in cylinders


∂tu(t, x) = ∆α/2u(t, x), t ∈ (0,T ), x ∈ D,

u(t, x) = g(t, x), t ∈ (0,T ), x ∈ Dc ,

u(0, x) = u0(x), x ∈ D.

(FHE)

(0,T )× Dg(t, x) g(t, x)

u0(x) t = 0

We will define solutions to (FHE) by means of a mean-value property with respect to the
space-time α-stable process
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Dirichlet problem and Markov processes

The general idea of solving (nonlocal) PDEs involving Markov operators goes back at
least to Kakutani:
formally, if L is the generator of a Markov process Yt , then a solution to{

Lu(x) = 0, x ∈ D,

u(x) = g(x), x ∈ Dc ,

is given by u(x) = Ex [g(XτD )].

Example
L = ∆ −→ Xt − Brownian motion −→ Law(XτD )− harmonic measure (∂D)

L = ∆α/2 −→ Xt − α-stable process −→ Law(XτD )− α-harmonic measure ((D)c)

Lemma

On C 1,2
b (Rd), the generator of Ẋ coincides with −∂t +∆α/2.
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b (Rd), the generator of Ẋ coincides with −∂t +∆α/2.

Artur Rutkowski (WUST) Fractional caloric functions Trondheim, 11.12.2024 9 / 29



First exit from a cylinder

If G = [0, t)× U then Ẋ starting at (t, x) can exit G in two ways depending on whether
X leaves U before time t or not.

Figure: U = (−3, 3). On the left X leaves U before t = 1, on the right it survives until t = 1.

E(t,x)u(ẊτG ) = E(t,x)[u(XτG ); τU ≤ t] + E(t,x)[u(XτG ); τU > t]

= E(t,x)[u(τU ,XτU ); τU ≤ t] + PU
t u0(x).
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E(t,x)u(ẊτG ) = E(t,x)[u(XτG ); τU ≤ t] + E(t,x)[u(XτG ); τU > t]

= E(t,x)[u(τU ,XτU ); τU ≤ t] + PU
t u0(x).

Artur Rutkowski (WUST) Fractional caloric functions Trondheim, 11.12.2024 10 / 29



Lateral exit distribution

Ikeda–Watanabe formula: let I ⊆ [0,∞) and A ⊆ Uc , I ,A – Borel. Then,

Px [τU ∈ I ;XτU ∈ A] =

∫
I

∫
A

∫
U

pU
s (x , y)ν(y , z) dy dz ds.

Let JU be the lateral Poisson kernel defined as

JU(t, x , s, z) =

∫
U

pU
t−s(x , y)ν(y , z) dy , s < t, x ∈ U, z ∈ Uc .

Then,

E(t,x)[u(τU ,XτU ); τU ≤ t] =

∫ t

0

∫
Uc

u(s, z)JU(t, x , s, z) dz ds.

Overall,

E(t,x)u(ẊτG ) =

∫
U

pU
t (x , y)u0(y) dy +

∫ t

0

∫
Uc

u(s, z)JU(t, x , s, z) dz ds.
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Caloric functions in cylinders

Definition

We say that u ≥ 0 is caloric in [0,T )× D if for all (t, x) ∈ (0,T )× D,

u(t, x) = E(t,x)u(ẊτG ) < ∞, (1)

holds for every open G ⊂⊂ [0,T )× D such that (t, x) ∈ G .

If (1) holds for (0, t)× D in place of G , then we say that u is regular caloric.

If u ≡ 0 on the parabolic boundary

Dp = D × {0} ∪ Dc × (0,T ),

then we say that u is singular caloric.

1 J. L. Doob. Classical potential theory and its probabilistic counterpart, 1984.
2 Z.-Q. Chen, T. Kumagai. Heat kernel estimates for stable-like processes in d-sets. Stoch. Process. App.

108:27–62, 2003.

Note: by virtue of the strong Markov property we can and will verify the mean-value
property only on cylinders (0, t)× U, where U ⊂⊂ D is Lipschitz.
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Beyond regular caloric functions

If u is regular caloric, then it is uniquely determined by g and u0:

u(t, x) = PD
t u0(x) +

∫ t

0

∫
Dc

g(s, z)JD(t, x , s, z) dz ds.

Problem: are there caloric functions which are not regular? Put differently, is a caloric
function uniquely determined by g and u0?

Elliptic case (∆α/2u = 0):

Hmissi (1994): explicit example of a positive singular α-harmonic function.

Bogdan (1999): full representation of nonnegative α-harmonic functions in Lipschitz
domains. Singular harmonic functions are of the form

∫
∂D

Mx0
D (x ,Q)µ(dQ) with

Mx0
D (x ,Q) = lim

D∋y→Q

GD(x , y)

GD(x0, y)
, x ∈ D, Q ∈ ∂D. (Martin kernel)

1 K. Bogdan. Representation of α-harmonic functions in Lipschitz domains. Hiroshima Math. J. 29:227–243,
1999.

2 F. Hmissi. Fonctions harmoniques pour les potentiels de Riesz sur la boule unite, Expo. Math. 12(3):281–288,
1994.
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Parabolic Martin kernel

For cones Γ with apex at 0 Bogdan–Palmowski–Wang showed that the limits below exist:

lim
Γ∋y→0

pΓ
t (x , y)

Py (τΓ > 1)
, lim

Γ∋y→0

pΓ
t (x , y)

GΓ(x0, y)
, lim

Γ∋y→0

pΓ
t (x , y)

pΓ
t0(x0, y)

, t0, x0 fixed. (∗)

Analogue of (∗) for bounded Lipschitz sets: dissertation of G. Armstrong.
C 1,1 sets: Fernández-Real and Ros-Oton.

1 K. Bogdan, Z. Palmowski, L. Wang. Yaglom limit for stable processes in cones. Electron. J. Probab. 23:1–19,
2018.

2 G. Armstrong. Unimodal Lévy processes on bounded Lipschitz sets. Doctoral dissertation. University of
Oregon, 2018.

3 X. Fernández-Real, X. Ros-Oton. Boundary regularity for the fractional heat equation. Rev. Acad. Cienc. Ser.
A Math. 110:49–64, 2016.

Definition (Parabolic Martin kernel)

ηt,Q(x) := lim
D∋y→Q

pD
t (x , y)

Py (τD > 1)
, t > 0, x ∈ D, Q ∈ ∂D.
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Representation of caloric functions

Lemma

Fix Q ∈ ∂D. Then, the function u(t, x) = ηt,Q(x) is singular caloric in (0,∞)× D.

Theorem (G. Armstrong, K. Bogdan, AR 2024)

Assume that u ≥ 0 is caloric in [0,T )× D. Then there exists unique decomposition
u = R +S , such that R,S ≥ 0, R is regular caloric and S is singular caloric. Furthermore,

R(t, x) = E(t,x)u(Ẋτ(0,t)×D
).

Theorem (GA–KB–AR 2024)

There exists unique Radon measure µ on [0,T )× ∂D such that

S(t, x) =

∫
[0,t)×∂D

nt−s,Q(x)µ(dQds). (M)

1 G. Armstrong, K. Bogdan, A. Rutkowski. Caloric functions and boundary regularity for the fractional Laplacian
in Lipschitz open sets. Math. Ann. (online), 2024.
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No initial condition

Definition

We say that u ≥ 0 is caloric in (0,T )× D if for all (t, x) ∈ (0,T )× D,

u(t, x) = E(t,x)u(ẊτG ) < ∞,

holds for every open G ⊂⊂ (0,T )× D such that (t, x) ∈ G .

In the above definition we never integrate the values at t = 0.

Theorem (GA–KB–AR 2024)

Assume that u is caloric on (0,T )× D and let g = u|Dc . Then there exist unique Radon
measures µ on [0,T )× ∂D and µ0 on D such that for all 0 < t < T and x ∈ D,

u(t, x) = PD
t µ0(x) +

∫ t

0

∫
Dc

g(s, z)JD(t, x , s, z) dz ds +

∫
[0,t)×∂D

nt−s,Q(x)µ(dQds).

We also show that
∫
D
Py (τD > 1)µ0(dy) < ∞.
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holds for every open G ⊂⊂ (0,T )× D such that (t, x) ∈ G .

In the above definition we never integrate the values at t = 0.

Theorem (GA–KB–AR 2024)

Assume that u is caloric on (0,T )× D and let g = u|Dc . Then there exist unique Radon
measures µ on [0,T )× ∂D and µ0 on D such that for all 0 < t < T and x ∈ D,

u(t, x) = PD
t µ0(x) +

∫ t

0

∫
Dc

g(s, z)JD(t, x , s, z) dz ds +

∫
[0,t)×∂D

nt−s,Q(x)µ(dQds).

We also show that
∫
D
Py (τD > 1)µ0(dy) < ∞.

Artur Rutkowski (WUST) Fractional caloric functions Trondheim, 11.12.2024 16 / 29



Other related results

Elliptic setting:
1 K. Bogdan, T. Kulczycki, M. Kwaśnicki. Estimates and structure of α-harmonic functions. Probab. Th. Rel.

Fields 140:345–381, 2008.
2 N. Abatangelo. Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian.

Discrete Contin. Dyn. Syst. 35(12):5555-5607, 2015.

Parabolic setting:
4 B. Barrios, I. Peral, F. Soria, and E. Valdinoci. A Widder’s type theorem for the heat equation with nonlocal

diffusion. Arch. Ration. Mech. Anal., 213(2):629–650, 2014.
5 H. Chan, D. Gómez-Castro, J.-L. Vázquez. Singular solutions for fractional parabolic boundary value problems.

Rev. Acad. Cienc. Ser. A Math. 116(4):159, 2022.

Chan–Gómez-Castro–Vázquez give a quite general framework. It includes (a class of)
singular solutions to (∂t −∆α/2)u = f in C 1,1 cylinders. Parabolic Martin kernel used
there is:

lim
y→Q∈∂D

pD
t (x , y)

δD(y)α/2 .
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Relation between notions of solution to the fractional heat equation
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Relation to distributional solutions

Definition

We say that u ≥ 0 is a distributional solution to (FHE), if for every ϕ ∈ C∞
c ([0,T )× D)

and 0 ≤ s < t < T ,∫
D

ϕ(t, x)u(t, x) dx =

∫
D

ϕ(s, x)u(s, x) dx +

∫ t

s

∫
Rd

(∂t +∆α/2)ϕ(τ, x)u(τ, x) dx dτ

and the integrals converge absolutely.

Theorem (AR, 2024)

Every caloric function is a distributional solution to (FHE) and every distributional
solution to (FHE) has a modification which is caloric.

Elliptic and related cases: Bogdan and Byczkowski, Chen.
1 K. Bogdan, T. Byczkowski. Potential theory for the α-stable Schrödinger operator on bounded Lipschitz

domains. Studia Math., 133(1):53—92, 1999.
2 Z.-Q. Chen. On notions of harmonicity. Proc. Amer. Math. Soc., 137(10):3497—3510, 2009.
3 A. Rutkowski. Equivalence of definitions of fractional caloric functions. ArXiv:2410.16188, 2024.
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Relation to classical solutions

A caloric function need not solve the fractional heat equation pointwise.

Example

Let

u(t, x) =

{
ηt−1/2,Q(x), t > 1/2, x ∈ D,

0, otherwise.

Then u is caloric in [0,∞)× D but it is not even Lipschitz in t at t = 1/2.

Note that in the above example µ = δ1/2 ⊗ δQ .

(Local) smoothness in space is not an issue here.

Lemma

If u is caloric in [0,T )× D, then u(t, ·) is smooth in D for all t ∈ (0,T ).
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Sufficient conditions for classical solutions

Goal: find possibly mild conditions on µ and g under which a caloric function solves
(FHE) pointwise

Lemma (AR, 2024)

Let Br = B(0, r), B = B1. If x ∈ B1/2, then

|∂tJ
B(t, x , s, z)| ≲

 1
t−s

+ δB (z)−α/2

(t−s)1−(2−α)/2α , 0 < t − s < T , z ∈ B2 \ B,

|z|−d−α

t−s
, 0 < t − s < T , z ∈ Bc

2 .

Note that the singularity in time is of order (t − s)−1 since (2 − α)/2α > 0.

Theorem (AR, 2024)

If u is caloric with g ∈ CDini((0,T ), L1(1 ∧ ν)), and µ ∈ CDini((0,T ),M(∂D)), then u
is a classical solution to (FHE).
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Some comments

Recall that Dini continuity means that there exists a modulus of continuity ω such
that ∫ 1

0

ω(t)

t
dt < ∞.

Burch (1978) proved that the Dini continuity of the right-hand in the Poisson
problem for second-order operators is sufficient to get C 2 solutions. Note that ∂t is
a first order operator.

Dini-type conditions in the context of C 2 regularity for the nonlocal Poisson problem
were considered by Grzywny, Kassmann and Leżaj.

The parabolic case is much more laborious than the elliptic case. For ∆α/2 the
Poisson kernel of a ball has an explicit formula and every α-harmonic function is
smooth.

1 C. C. Burch. The Dini condition and regularity of weak solutions of elliptic equations. J. Differential Equations,
30(3):308–323, 1978.

2 T. Grzywny, M. Kassmann, and Ł. Leżaj. Remarks on the nonlocal Dirichlet problem. Potential Anal.,
54(1):119–151, 2021.
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Some comments

Recall that Dini continuity means that there exists a modulus of continuity ω such
that ∫ 1

0

ω(t)

t
dt < ∞.

Burch (1978) proved that the Dini continuity of the right-hand in the Poisson
problem for second-order operators is sufficient to get C 2 solutions. Note that ∂t is
a first order operator.

Dini-type conditions in the context of C 2 regularity for the nonlocal Poisson problem
were considered by Grzywny, Kassmann and Leżaj.
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Boundary regularity for ∆α/2 in Lipschitz sets
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Previously known results

Boundary Harnack principle in Lipschitz sets: Bogdan (1997).

Green function and expected exit time estimates: Chen–Song (1998), Jakubowski
(2002).

Dirichlet heat kernel estimates:
Bogdan–Grzywny–Ryznar (2010): for Lipschitz D,

pD
t (x , y) ≈ Px(τD > t)pt(x , y)Py (τD > t), 0 < t < T , x , y ∈ Rd .

Chen–Kim–Song (2010): for D of class C 1,1,

pD
t (x , y) ≈

(
1 ∧ δD(x)

α/2
√
t

)
pt(x , y)

(
1 ∧ δD(y)

α/2
√
t

)
, 0 < t < T , x , y ∈ Rd .

In C 1,1 sets GD and pD
t (t fixed) decay like δ

α/2
D (x) at ∂D. In Lipschitz sets the decay is

less explicit, also for harmonic functions.
1 K. Bogdan, T. Grzywny, M. Ryznar. Heat kernel estimates for the fractional Laplacian with Dirichlet

conditions. Ann. Probab. 38(5):1901–1923, 2010.
2 Z.-Q. Chen, P. Kim, R. Song. Heat kernel estimates for the Dirichlet fractional Laplacian. J. Eur. Math. Soc.

12:1307–1329, 2010.
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Previously known results

Ros-Oton–Serra (2014): if D is C 1,1, GD [f ]/δ
α/2
D (x) is Hölder up to the boundary.

Ros-Oton–Fernández-Real (2016): if D is C 1,1, PD
t u0/δ

α/2
D (x) is Hölder up to the

boundary.

PD
t u0 decay with the same rate as harmonic functions: Bogdan–Palmowski–Wang

(2018), Armstrong (2019).

Lian–Zhang–Li–Hong (2020): Hölder decay at the boundary for Poisson equation.

Ding, Zhang (2024): Hölder decay at the boundary for the fractional heat equation.

1 X. Ros-Oton and J. Serra. The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J.
Math. Pures Appl. (9), 101(3):275–302, 2014.

2 Y. Lian, K. Zhang, D. Li, and G. Hong. Boundary Hölder regularity for elliptic equations. J. Math. Pures Appl.
143:311–333, 2020.

3 M. Ding and C. Zhang. A new unified method for boundary Hölder continuity of parabolic equations. J. Geom.
Anal. 34(6):Paper No. 179, 39, 2024.
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Poisson equation in Lipschitz sets

Theorem (GA–KB–AR 2024)

Let r > 0. There exists p0 > 1 depending on d , α, r and the Lipschitz characteristics of
D such that for all p ∈ [1, p0) there exist constants C > 0 and µ ∈ (0, 1] depending only
on d , α, r , p and the Lipschitz characteristics of D such that∥∥∥∥ GD(y , ·)

GD(x0, y)
− GD(y

′, ·)
GD(x0, y ′)

∥∥∥∥
Lp(D)

≤ C |y − y ′|µ, y , y ′ ∈ D \ B(x0, r). (2)

Corollary

Let p > p0/(p0 − 1) and let f ∈ Lp(D). Then, the function y 7→ GD f (y)/GD(x0, y) is
Hölder continuous on D \ B(x0, r) with the Hölder constant and exponent depending
only on d , α, p, r , the Lipschitz characteristics of D, and ∥f ∥Lp(D).

Remark: for the classical Poisson equation such result is known to be false if the
Lipschitz constant of D is too large.
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Fractional heat equation in Lipschitz sets

Theorem (GA–KB–AR 2024)

There exist C , γ > 0 depending only on d , α,T1,T2 and the Lipschitz characteristics of
D, such that

∥nt,·(x)∥Cγ (D) ≤ C , 0 < T1 < t < T2, x ∈ D.

Corollary

∥∥∥∥ PD
t u0(·)

P·(τD > 1)

∥∥∥∥
Cγ (D)

≤ C∥u0∥L1(D), 0 < T1 < t < T2, x ∈ D.

Note: similar results hold for GD(x0, y) or pD
t0(x0, y) in place of Py (τD > 1).
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Some comments

Last result was essential to get the representation of singular caloric functions.

Regularity for PD
t u0 follows from regularity of GD [f ]. We let pD

t = GD∆
α/2pD

t and
use the spectral decomposition.

Formula (2) is the key result. Proof uses BHP, specific interior Harnack principle,
and estimates of GD and the ratios.

Papers contain many useful estimates on pD
t , JD and their derivatives.
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Thank you for your attention!
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