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Generalized porous medium equations

Let QT := RN × (0,T ). We consider the following Cauchy problem:

(GPME)

∂tu −
(
tr(σσTD2ϕ(u)) + Lµ[ϕ(u)]

)
= 0 in QT ,

u(x , 0) = u0(x) on RN ,

where
ϕ : R→ R is continuous and nondecreasing, and
u0 some rough initial data.

Main well-posedness results:
Uniqueness for u0 ∈ L∞ with u − u0 ∈ L1.
Existence for u0 ∈ L1 ∩ L∞.
Convergent numerical schemes for u0 ∈ L1 ∩ L∞.
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The diffusion operator

• tr(σσTD2·) is a possibly degenerate self-adjoint second-order
local operator. The most common example is σσT ≡ I , that is, the
classical Laplacian ∆.

• Lµ is a self-adjoint pure-jump Lévy operator
(anomalous/nonlocal diffusion operator) defined, for smooth
enough functions ψ, as e.g. the singular integral

Lµ[ψ](x) :=

ˆ
RN\{0}

(
ψ(x + z)− ψ(x)

)
dµ(z).

The most common example is the fractional Laplacian −(−∆)
α
2

with α ∈ (0, 2).
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Selective summary of previous results

Local case: ∂tu = ∆u, ∂tu = ∆um, ∂tu = ∆ϕ(u).

J. L. Vázquez. The porous medium equation. Mathematical theory. Oxford Mathematical
Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007.
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Selective summary of previous results

Nonlocal case: ∂tu = Lµ[ϕ(u)].

• Well-posedness when Lµ = −(−∆)
α
2 :

Many people: Vázquez, de Pablo, Quirós, Rodríguez, Brändle,
Bonforte, Stan, del Teso, Muratori, Grillo, Punzo, . . .

• Well-posedness for other Lµ:

Nonsingular operators
F. Andreu-Vaillo, J. Mazón, J. D. Rossi, and J. J. Toledo-Melero. Nonlocal diffusion
problems, volume 165 of Mathematical Surveys and Monographs. American Mathematical
Society, Providence, RI; Real Sociedad Matemática Española, Madrid, 2010.

Fractional Laplace like operators (with some x-dependence)
A. de Pablo, F. Quirós, and A. Rodríguez. Nonlocal filtration equations with rough kernels.
Nonlinear Anal., 137:402–425, 2016.
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Selective summary of previous results

Previous results (mostly) rely on:
The porous medium nonlinearity ϕ(u) = um with m > 1.
A very restrictive class of Lévy operators.
The use of L1-energy solutions.

In our case:
Uniqueness is hard to prove because of a very weak solution
concept (however, existence is then easier).
The result we obtain is kind of different since we work in L∞.
We can handle very weak assumptions on ϕ and Lµ.
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Assumptions

Unless otherwise stated we always assume that

ϕ : R→ R is continuous and nondecreasing,(Aϕ)

and

µ ≥ 0 is a symmetric Radon measure on RN \ {0} satisfying(Aµ) ˆ
|z|≤1

|z |2 dµ(z) +

ˆ
|z|>1

1 dµ(z) <∞.

Jørgen Endal On nonlocal (and local) equations of porous medium type



Assumptions

The assumption

ϕ : R→ R is continuous and nondecreasing,

includes nonlinearities of the following kind
the porous medium,
fast diffusion, and
(one-phase) Stefan problem.
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Assumptions

The assumption

µ ≥ 0 is symmetric and satisfies
´
|z|>0 min{|z |2, 1} dµ(z) <∞

ensures that our Lµ

+ tr(σσTD2·) is the most general (self-adjoint, linear)
operator satisfying the global comparison principle;
is a pure-jump self-adjoint Lévy operator;
contains spatial discretizations of tr(σσTD2·) + Lµ[·];
is relevant for applications (in finance, physics, biology, etc.);
includes important examples:

the fractional Laplacian −(−∆)
α
2 with α ∈ (0, 2);

relativistic Schrödinger type operators mαI − (m2I −∆)
α
2 with

α ∈ (0, 2) and m > 0;
for the measure ν with ν(RN) <∞,
Lν [ψ](x) =

´
RN

(
ψ(x + z)− ψ(x)

)
dν(z);

for the function J with
´
Rd J(z) dz = 1, LJ dz [ψ] = J ∗ ψ − ψ;

Fourier multipliers F(Lµ[ψ]) = −sLµF(ψ).
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Simplification

To simplify, we consider σ ≡ 0, that is,

tr(σσTD2ϕ(u)) + Lµ[ϕ(u)] = Lµ[ϕ(u)].

However, the same approach will work for the full operator.
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Distributional solution

Definition

Under the assumptions (Aϕ), (Aµ), and u0 ∈ L∞(RN),
u ∈ L∞(QT ) is a distributional solution of (GPME) if

0 =

ˆ T

0

ˆ
RN

(
u(x , t)∂tψ(x , t) + ϕ(u(x , t))Lµ[ψ(·, t)](x)

)
dx dt

+

ˆ
RN

u0(x)ψ(x , 0) dx

for all ψ ∈ C∞c (RN × [0,T )).
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Uniqueness

Theorem (Preuniqueness, [del Teso&JE&Jakobsen, 2017])

Assume (Aϕ) and (Aµ). Let u(x , t) and û(x , t) satisfy

u, û ∈ L∞(QT ),

u − û ∈ L1(QT ),

∂tu − Lµ[ϕ(u)] = ∂t û − Lµ[ϕ(û)] in D′(QT ),

ess lim
t→0+

ˆ
RN

(u(x , t)−û(x , t))ψ(x , t) dx = 0 ∀ψ ∈ C∞c (RN×[0,T )).

Then u = û a.e. in QT .
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Uniqueness

Corollary (Uniqueness, [del Teso&JE&Jakobsen, 2017])

Assume (Aϕ), (Aµ), and u0 ∈ L∞(RN). Then there is at most one
distributional solution u of (GPME) such that u ∈ L∞(QT ) and
u − u0 ∈ L1(QT ).

Proof: Assume there are two solutions u and û with the same
initial data u0. Then all assumptions of Theorem Preuniqueness
obviously hold (‖u − û‖L1 ≤ ‖u − u0‖L1 + ‖û − u0‖L1 <∞), and
u = û a.e.

Uniqueness holds for u0 6∈ L1, for example u0(x) = c + φ(x) for
c ∈ R and φ ∈ L∞(RN) ∩ L1(RN). However, periodic u0’s are not
included because of the assumption u − u0 ∈ L1.
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Existence

Theorem (Existence, [del Teso, JE, Jakobsen, 2017])

Assume (Aϕ), (Aµ), and u0 ∈ L1(RN) ∩ L∞(RN). Then there
exists a unique distributional solution u of (GPME) satisfying

u ∈ L1(QT ) ∩ L∞(QT ) ∩ C ([0,T ]; L1
loc(RN)).

Proof: By convergence of numerical solution (as we will see
later).
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The proof of Theorem Preuniqueness

Based on a proof by Brézis and Crandall.

H. Brézis and M. G. Crandall. Uniqueness of solutions of the initial-value problem for
ut − ∆ϕ(u) = 0. J. Math. Pures Appl. (9), 58(2):153–163, 1979.

1. Define U := u − û and Φ := ϕ(u)− ϕ(û), then U solves{
∂tU − Lµ[Φ] = 0 in QT

U(x , 0) = 0 on RN .

Note that U ∈ L1 ∩ L∞ and Φ ∈ L∞.
2. Consider

εvε − Lµ[vε] = g in RN ,

and define Bµε [g ] := vε, that is, B
µ
ε = (εI − Lµ)−1 is the

resolvent of Lµ.
Note that this is a linear elliptic equation.
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The proof of Theorem Preuniqueness

3. U = εBµε [U]− Lµ[Bµε [U]].

4. Define

hε(t) :=

ˆ
RN

UBµε [U] dx =

ˆ
RN

(εI − Lµ)Bµε [U]Bµε [U] dx

= ε‖Bµε [U]‖2L2 + ‖(Lµ)
1
2 [Bµε [U]]‖2L2 .

5. Show that hε → 0 as ε→ 0+.
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The proof of Theorem Preuniqueness

The hardest part is to show that hε → 0 as ε→ 0+. Some
important steps:

1. εBµε [U]→ 0 implies hε → 0 as ε→ 0+.
2. Enough to prove that εBµε [γ]→ 0 for all γ ∈ C∞c (RN). Note

that Γε := εBµε [γ] solves

εΓε − Lµ[Γε] = εγ in D′(RN).

3. A priori results and compactness give Γε → Γ as ε→ 0+.
4. (Liouville) If suppµ 6= ∅, Γ ∈ C0, and Lµ[Γ] = 0 in D′, then

Γ ≡ 0.

Note that a general Liouville result do not hold for Lµ: Take
µ(z) = δ2π(z) + δ−2π(z), then Lµ[cos](x) = 0, but this function is
not constant.
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Extensions and related results

We can also consider the following Cauchy problem:

(x-GPME)

∂tu − Aλ[ϕ(u)] = 0 in QT ,

u(x , 0) = u0(x) on RN ,

where
ϕ : R→ R is continuous and nondecreasing, and
Aλ is a x-dependent generalization of Lµ.

Main results:
Uniqueness in L1 ∩ L∞.
Energy solutions ⇐⇒ distributional solutions with finite
energy.
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Important observations

∆hψ(x) :=
ψ(x + hei ) + ψ(x − hei )− 2ψ(x)

h2

=

ˆ
RN

(
ψ(x + z)− ψ(x)

)
dνh(z) =: Lνh [ψ](x)

where

νh(z) :=
1
h2

N∑
i=1

δhei (z) + δ−hei (z)

satisfies νh(RN) <∞.
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Important observations

By now, there exist several spatial discretizations of Lµ (e.g.
quadrature and spectral methods).

Y. Huang and A. Oberman. Finite difference methods for fractional Laplacians. Preprint,
arXiv:1611.00164v1 [math.NA], 2016.

Our contribution is to note and exploit that (some of) the
discretizations of Lµ is again a Lévy operator.
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Numerical schemes for (GPME)

Recall that our Cauchy problem was given as

(GPME)

∂tu −
(
tr(σσTD2ϕ(u)) + Lµ[ϕ(u)]

)
= 0 in QT ,

u(x , 0) = u0(x) on RN ,

Our numerical scheme can then take the following form

(NumGPME)

U j
β−U

j−1
β

∆t = G∆x(U j
β,U

j−1
β ) in ∆xZN ×∆tN,

“U0
β = u0” in ∆xZN .
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Numerical schemes for (GPME)

In our most general case, we have that

G∆x(U j
β,U

j−1
β ) := Lν1,∆x [ϕ∆x

1 (U j
β)] + Lν2,∆x [ϕ∆x

2 (U j−1
β )]

where ν1,∆x , ν2,∆x satisfy ν1,∆x(RN), ν2,∆x(RN) <∞.

Thus our framework includes
a mixture of implicit and explicit schemes (θ-methods);
the possibility of discretizing the singluar and nonsingular parts
of Lµ in different ways; and
combinations of the above.

Note that by our previous observations, we are, in fact, able to
approximate local operators of the form

tr(σσTD2·).
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Convergence of the numerical schemes

The scheme defined by (NumGPME) is
monotone,
(conservative if the ϕ’s involved are Lipschitz)
Lp-stable, and
consistent.

Theorem (Convergence, [del Teso&JE&Jakobsen, 2018])

For the interpolant U, we have

U → u in C ([0,T ]; L1
loc(RN)) as ∆x ,∆t → 0+

where u ∈ L1(QT ) ∩ L∞(QT ) ∩ C ([0,T ]; L1
loc(RN)) is a

distributional solution of (GPME).

Note that we only assume u0 ∈ L1 ∩ L∞.
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Thank you for your attention!
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