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Local and nonlocal diffusion

Diffusion is the act of “spreading out” – the movement from areas
of high concentration to areas of low concentration.
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Local and nonlocal diffusion

Let u(x , t) be the probability for a particle to be at discrete
x ∈ hZ, t ∈ τN ∩ [0,T ].

Assume that we are only allowed to jump one point either to the
left or to the right, each with probability 1

2 .

The probability of being at point x at time t + τ is then

u(x , t + τ) =
1
2
u(x + h, t) +

1
2
u(x − h, t).
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Local and nonlocal diffusion

Let u(x , t) be the probability for a particle to be at discrete
x ∈ hZ, t ∈ τN ∩ [0,T ].

Assume that we are only allowed to jump one point either to the
left or to the right, each with probability 1

2 .

Choose (the scaling) τ = 1
2h

2 and divide by it to obtain

u(x , t + τ)− u(x , t)

τ
=

u(x + h, t) + u(x − h, t)− 2u(x , t)

h2 .
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Local and nonlocal diffusion

Let u(x , t) be the probability for a particle to be at discrete
x ∈ hZ, t ∈ τN ∩ [0,T ].

Assume that we are only allowed to jump one point either to the
left or to the right, each with probability 1

2 .

As τ, h→ 0+,

∂tu = ∆u in R× (0,T ),

that is, u is a solution of the heat equation.

A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung
von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik (in German), 322(8):
549–560, 1905.
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Local and nonlocal diffusion

Now, we change the rules: A particle can jump to any point with a
certain probability, but the probability of jumping to the left or to
the right is exactly the same.

We choose a density K : R→ [0,∞) up to normalization factors as

K (y) =

{
1

|y |1+α y 6= 0

0 y = 0

for α ∈ (0, 2). It satisfies
(i) K (y) = K (−y)

(ii)
∑

k∈Z K (k) = 1.

As before, the probability of being at point x at time t + τ is

u(x , t + τ) =
∑
k∈Z

K (k)u(x + hk, t).
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Local and nonlocal diffusion

Now, we change the rules: A particle can jump to any point with a
certain probability, but the probability of jumping to the left or to
the right is exactly the same.

We choose a density K : R→ [0,∞) up to normalization factors as

K (y) =

{
1

|y |1+α y 6= 0

0 y = 0

for α ∈ (0, 2). It satisfies
(i) K (y) = K (−y)

(ii)
∑

k∈Z K (k) = 1.

Then, for the choice (of scaling) τ = hα,

u(x , t + τ)− u(x , t)

τ
=

∑
k∈Z\{0}

(
u(x + hk, t)− u(x , t)

)
K (hk)h.
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Local and nonlocal diffusion

Now, we change the rules: A particle can jump to any point with a
certain probability, but the probability of jumping to the left or to
the right is exactly the same.

As τ, h→ 0+,

∂tu = P.V.
ˆ
|z|>0

(
u(x + z , t)− u(x , t)

) c1,α
|z |1+α

dz

= −(−∆)
α
2 u in R× (0,T )

where c1,α > 0 and −(−∆)
α
2 with α ∈ (0, 2) is the fractional

Laplacian. We thus observe that u is a solution of the fractional
heat equation.

E. Valdinoci. From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat.
Apl. SeMA, (49):33–44, 2009.
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Diffusion operators

• Lσ[ψ] := tr(σσTD2ψ) =
∑N

i=1(σi · D)2 is a possibly degenerate
self-adjoint second-order local operator.

The most common
example is σσT ≡ I , that is, the classical Laplacian ∆.

• For general symmetric measures µ,

Lµ[ψ](x) := P.V.
ˆ
RN\{0}

(
ψ(x + z)− ψ(x)

)
dµ(z),

which includes the well-known fractional Laplacian by choosing
dµ(z) =

cN,α
|z|N+α dz for some cN,α > 0.
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Assumption

The assumption

µ ≥ 0 is a symmetric Radon measure on RN \ {0} satisfying(Aµ) ˆ
|z|≤1

|z |2 dµ(z) +

ˆ
|z|>1

1 dµ(z) <∞.

ensures that our Lµ

is the generator of a pure-jump symmetric Lévy process;
is relevant for applications (in finance, physics, biology, etc.);
includes important examples:

the fractional Laplacian −(−∆)
α
2 with α ∈ (0, 2);

relativistic Schrödinger type operators mαI − (m2I −∆)
α
2 with

α ∈ (0, 2) and m > 0;
for the measure ν with ν(RN) <∞,
Lν [ψ](x) =

´
RN

(
ψ(x + z)− ψ(x)

)
dν(z);

for the function J with
´
Rd J(z) dz = 1, LJ dz [ψ] = J ∗ ψ − ψ;

Fourier multipliers F(Lµ[ψ]) = −sLµF(ψ).

Jørgen Endal On nonlocal (and local) equations of porous medium type



Assumption

The assumption

µ ≥ 0 is a symmetric Radon measure on RN \ {0} satisfying(Aµ) ˆ
|z|≤1

|z |2 dµ(z) +

ˆ
|z|>1

1 dµ(z) <∞.

ensures that our Lµ

is the generator of a pure-jump symmetric Lévy process;

is relevant for applications (in finance, physics, biology, etc.);
includes important examples:

the fractional Laplacian −(−∆)
α
2 with α ∈ (0, 2);

relativistic Schrödinger type operators mαI − (m2I −∆)
α
2 with

α ∈ (0, 2) and m > 0;
for the measure ν with ν(RN) <∞,
Lν [ψ](x) =

´
RN

(
ψ(x + z)− ψ(x)

)
dν(z);

for the function J with
´
Rd J(z) dz = 1, LJ dz [ψ] = J ∗ ψ − ψ;

Fourier multipliers F(Lµ[ψ]) = −sLµF(ψ).

Jørgen Endal On nonlocal (and local) equations of porous medium type



Assumption

The assumption

µ ≥ 0 is a symmetric Radon measure on RN \ {0} satisfying(Aµ) ˆ
|z|≤1

|z |2 dµ(z) +

ˆ
|z|>1

1 dµ(z) <∞.

ensures that our Lµ

is the generator of a pure-jump symmetric Lévy process;
is relevant for applications (in finance, physics, biology, etc.);

includes important examples:
the fractional Laplacian −(−∆)

α
2 with α ∈ (0, 2);

relativistic Schrödinger type operators mαI − (m2I −∆)
α
2 with

α ∈ (0, 2) and m > 0;
for the measure ν with ν(RN) <∞,
Lν [ψ](x) =

´
RN

(
ψ(x + z)− ψ(x)

)
dν(z);

for the function J with
´
Rd J(z) dz = 1, LJ dz [ψ] = J ∗ ψ − ψ;

Fourier multipliers F(Lµ[ψ]) = −sLµF(ψ).

Jørgen Endal On nonlocal (and local) equations of porous medium type



Assumption

The assumption

µ ≥ 0 is a symmetric Radon measure on RN \ {0} satisfying(Aµ) ˆ
|z|≤1

|z |2 dµ(z) +

ˆ
|z|>1

1 dµ(z) <∞.

ensures that our Lµ

is the generator of a pure-jump symmetric Lévy process;
is relevant for applications (in finance, physics, biology, etc.);
includes important examples:

the fractional Laplacian −(−∆)
α
2 with α ∈ (0, 2);

relativistic Schrödinger type operators mαI − (m2I −∆)
α
2 with

α ∈ (0, 2) and m > 0;
for the measure ν with ν(RN) <∞,
Lν [ψ](x) =

´
RN

(
ψ(x + z)− ψ(x)

)
dν(z);

for the function J with
´
Rd J(z) dz = 1, LJ dz [ψ] = J ∗ ψ − ψ;

Fourier multipliers F(Lµ[ψ]) = −sLµF(ψ).

Jørgen Endal On nonlocal (and local) equations of porous medium type



Assumption

The assumption

µ ≥ 0 is a symmetric Radon measure on RN \ {0} satisfying(Aµ) ˆ
|z|≤1

|z |2 dµ(z) +

ˆ
|z|>1

1 dµ(z) <∞.

ensures that our Lµ

is the generator of a pure-jump symmetric Lévy process;
is relevant for applications (in finance, physics, biology, etc.);
includes important examples:

the fractional Laplacian −(−∆)
α
2 with α ∈ (0, 2);

relativistic Schrödinger type operators mαI − (m2I −∆)
α
2 with

α ∈ (0, 2) and m > 0;

for the measure ν with ν(RN) <∞,
Lν [ψ](x) =

´
RN

(
ψ(x + z)− ψ(x)

)
dν(z);

for the function J with
´
Rd J(z) dz = 1, LJ dz [ψ] = J ∗ ψ − ψ;

Fourier multipliers F(Lµ[ψ]) = −sLµF(ψ).

Jørgen Endal On nonlocal (and local) equations of porous medium type



Assumption

The assumption

µ ≥ 0 is a symmetric Radon measure on RN \ {0} satisfying(Aµ) ˆ
|z|≤1

|z |2 dµ(z) +

ˆ
|z|>1

1 dµ(z) <∞.

ensures that our Lµ

is the generator of a pure-jump symmetric Lévy process;
is relevant for applications (in finance, physics, biology, etc.);
includes important examples:

the fractional Laplacian −(−∆)
α
2 with α ∈ (0, 2);

relativistic Schrödinger type operators mαI − (m2I −∆)
α
2 with

α ∈ (0, 2) and m > 0;
for the measure ν with ν(RN) <∞,
Lν [ψ](x) =

´
RN

(
ψ(x + z)− ψ(x)

)
dν(z);

for the function J with
´
Rd J(z) dz = 1, LJ dz [ψ] = J ∗ ψ − ψ;

Fourier multipliers F(Lµ[ψ]) = −sLµF(ψ).

Jørgen Endal On nonlocal (and local) equations of porous medium type



Assumption

The assumption

µ ≥ 0 is a symmetric Radon measure on RN \ {0} satisfying(Aµ) ˆ
|z|≤1

|z |2 dµ(z) +

ˆ
|z|>1

1 dµ(z) <∞.

ensures that our Lµ

is the generator of a pure-jump symmetric Lévy process;
is relevant for applications (in finance, physics, biology, etc.);
includes important examples:

the fractional Laplacian −(−∆)
α
2 with α ∈ (0, 2);

relativistic Schrödinger type operators mαI − (m2I −∆)
α
2 with

α ∈ (0, 2) and m > 0;
for the measure ν with ν(RN) <∞,
Lν [ψ](x) =

´
RN

(
ψ(x + z)− ψ(x)

)
dν(z);

for the function J with
´
Rd J(z) dz = 1, LJ dz [ψ] = J ∗ ψ − ψ;

Fourier multipliers F(Lµ[ψ]) = −sLµF(ψ).

Jørgen Endal On nonlocal (and local) equations of porous medium type



Assumption

The assumption

µ ≥ 0 is a symmetric Radon measure on RN \ {0} satisfying(Aµ) ˆ
|z|≤1

|z |2 dµ(z) +

ˆ
|z|>1

1 dµ(z) <∞.

ensures that our Lµ

is the generator of a pure-jump symmetric Lévy process;
is relevant for applications (in finance, physics, biology, etc.);
includes important examples:

the fractional Laplacian −(−∆)
α
2 with α ∈ (0, 2);

relativistic Schrödinger type operators mαI − (m2I −∆)
α
2 with

α ∈ (0, 2) and m > 0;
for the measure ν with ν(RN) <∞,
Lν [ψ](x) =

´
RN

(
ψ(x + z)− ψ(x)

)
dν(z);

for the function J with
´
Rd J(z) dz = 1, LJ dz [ψ] = J ∗ ψ − ψ;

Fourier multipliers F(Lµ[ψ]) = −sLµF(ψ).

Jørgen Endal On nonlocal (and local) equations of porous medium type



Courrège and the global comparison property

Consider a linear, self-adjoint Lipschitz map
L : C 2

b (Rd)→ Cb(Rd) with the property that

ψ ∈ C 2
b (Rd) : ψ ≤ 0&ψ(x0) = 0 =⇒ L[ψ](x0) ≤ 0.

Then

L[ψ](x) = Lσ[ψ] + Lµ[ψ]

= tr(σσTD2ψ) + P.V.
ˆ
|z|>0

(
ψ(x + z)− ψ(x)

)
dµ(z).

P. Courrège. Sur la forme intégro-différentielle des opérateurs de C∞
k dans C satisfaisant au

principe du maximum. Séminaire Brelot-Choquet-Deny. Théorie du Potentiel, 10(1):1–38,
1965–1966.
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Generalized porous medium equations

Let QT := RN × (0,T ). We consider the following Cauchy problem:

(GPME)

∂tu = L[ϕ(u)] in QT ,

u(x , 0) = u0(x) on RN ,

where
L[ϕ(u)] = Lσ[ϕ(u)] + Lµ[ϕ(u)] = local + nonlocal
ϕ : R→ R is continuous and nondecreasing, and
u0 some rough initial data.

Main results:
Uniqueness for u0 ∈ L∞ with u − u0 ∈ L1.
Convergent numerical schemes in C ([0,T ]; L1(RN)) for
u0 ∈ L1 ∩ L∞.
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Assumptions

The assumption

ϕ : R→ R is continuous and nondecreasing,(Aϕ)

includes nonlinearities of the following kind
the porous medium ϕ(u) = um with m > 1,
fast diffusion ϕ(u) = um with 0 < m < 1, and
(one-phase) Stefan problem ϕ(u) = max{0, u − c} with c > 0.
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Selective summary of previous results

Local case: ∂tu = ∆u, ∂tu = ∆um, ∂tu = ∆ϕ(u).

• Well-posedness:
J. L. Vázquez. The porous medium equation. Mathematical theory. Oxford Mathematical
Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007.

• Numerical results:
Risebro, Karlsen, Bürger, DiBendedetto, Droniou, Eymard,
Gallouet, Ebmeyer,. . .
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Selective summary of previous results

Nonlocal case: ∂tu = Lµ[ϕ(u)].

• Well-posedness when Lµ = −(−∆)
α
2 :

Many people: Vázquez, de Pablo, Quirós, Rodríguez, Brändle,
Bonforte, Stan, del Teso, Muratori, Grillo, Punzo, . . .

• Well-posedness for other Lµ:

Nonsingular operators
F. Andreu-Vaillo, J. Mazón, J. D. Rossi, and J. J. Toledo-Melero. Nonlocal diffusion
problems, volume 165 of Mathematical Surveys and Monographs. American Mathematical
Society, Providence, RI; Real Sociedad Matemática Española, Madrid, 2010.

Fractional Laplace like operators (with some x-dependence)
A. de Pablo, F. Quirós, and A. Rodríguez. Nonlocal filtration equations with rough kernels.
Nonlinear Anal., 137:402–425, 2016.

• Well-posedness for related Lµ:
G. Karch, M. Kassmann, and M. Krupski. A framework for non-local, non-linear initial
value problems. arXiv, 2018.
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Selective summary of previous results

Nonlocal case: ∂tu = Lµ[ϕ(u)].

• Numerical results:
Huang, Oberman, Droniou, Nochetto, Otárola, Salgado, Cifani,
Karlsen, Jakobsen, del Teso, La Chioma, Debrabant, Camili,
Biswas, . . .
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Selective summary of previous results

Previous results (mostly) rely on:
The porous medium nonlinearity ϕ(u) = um with m > 1.
A very restrictive class of Lévy operators.
The use of L1-energy solutions.

In our case:
Uniqueness is hard to prove because of a very weak solution
concept (however, existence is then easier).
We can handle very weak assumptions on ϕ and Lµ.
Our schemes converge under “rough” conditions.
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Distributional solution

Definition

Under the assumptions (Aϕ), (Aµ), and u0 ∈ L∞(RN),
u ∈ L∞(QT ) is a distributional solution of (GPME) if

0 =

ˆ T

0

ˆ
RN

(
u(x , t)∂tψ(x , t) + ϕ(u(x , t))L[ψ(·, t)](x)

)
dx dt

+

ˆ
RN

u0(x)ψ(x , 0) dx

for all ψ ∈ C∞c (RN × [0,T )).
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Uniqueness

Theorem (Preuniqueness, [del Teso&JE&Jakobsen, 2017])

Assume (Aϕ) and (Aµ). Let u(x , t) and û(x , t) satisfy

u, û ∈ L∞(QT ),

u − û ∈ L1(QT ),

∂tu − L[ϕ(u)] = ∂t û − L[ϕ(û)] in D′(QT ),

ess lim
t→0+

ˆ
RN

(u(x , t)−û(x , t))ψ(x , t) dx = 0 ∀ψ ∈ C∞c (RN×[0,T )).

Then u = û a.e. in QT .
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Uniqueness

Corollary (Uniqueness, [del Teso&JE&Jakobsen, 2017])

Assume (Aϕ), (Aµ), and u0 ∈ L∞(RN). Then there is at most one
distributional solution u of (GPME) such that u ∈ L∞(QT ) and
u − u0 ∈ L1(QT ).

Proof: Assume there are two solutions u and û with the same
initial data u0. Then all assumptions of Theorem Preuniqueness
obviously hold (‖u − û‖L1 ≤ ‖u − u0‖L1 + ‖û − u0‖L1 <∞), and
u = û a.e.

Corollary (Uniqueness, [del Teso&JE&Jakobsen, 2017])

Assume (Aϕ), (Aµ), and u0 ∈ L1 ∩ L∞(RN). Then there is at most
one distributional solution u ∈ L1 ∩ L∞(RN) of (GPME).
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Finite difference discretizations

• Local operator:

∆hψ(x) :=
1
h2

N∑
i=1

(
ψ(x + hei ) + ψ(x − hei )− 2ψ(x)

)

• Nonlocal operator:

Lh[ψ](x) =
∑
β 6=0

(
ψ(x + zβ)− ψ(x)

)
ωβ,h

where ωβ = ω−β ≥ 0.
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Finite difference discretizations, nonlocal operator

Here,

Lh[ψ](x) :=

ˆ
|z|>h

(
ψ(x + z)− ψ(x)

)
dµ(z) ≈ Lµ[ψ](x)

that is, we require that the singular part is approximated by 0.

Let {pkβ}β∈ZN be an interpolation basis of order k for the
uniform-in-space spatial grid Gh, and let the interpolant of a
function ψ be Ih[ψ](z) :=

∑
β 6=0 ψ(zβ)pkβ(z). Then

Lh[ψ](x) =
∑
β 6=0

(
ψ(x + zβ)− ψ(x)

)ˆ
|z|>h

pkβ(z) dµ(z).

Monotone (
´
|z|>h p

k
β(z) dµ(z) ≥ 0) when k = 0, 1.

Better monotonicity if µ abs. cont. and regular (Newton-Cotes).
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Advantage using general nonlocal framework

Remember that

Lh[ψ](x) =
∑
β 6=0

(
ψ(x + zβ)− ψ(x)

)
ωβ,h.

Now, note that∑
β 6=0

(
ψ(x + zβ)− ψ(x)

)
ωβ,h =

ˆ
|z|>0

(
ψ(x + z)− ψ(x)

)
dνh(z)

where dνh(z) =
∑

β 6=0 ωβ,h dδzβ (z).
Moreover,

1
h2

N∑
i=1

(
ψ(x+hei )+ψ(x−hei )−2ψ(x)

)
=

ˆ
|z|>0

(
ψ(x+z)−ψ(x)

)
dνh(z)

where dνh(z) =
∑N

i=1
1
h2

(
dδhei (z) + dδ−hei (z)

)
.
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Numerical schemes for (GPME)

Recall that our Cauchy problem was given as

(GPME)

∂tu = L[ϕ(u)] in QT ,

u(x , 0) = u0(x) on RN .

Corresponding numerical scheme (NM):U j
β−U

j−1
β

∆t = Lνh,1 [ϕ(U j
β)] + Lνh,2 [ϕh(U j−1

β )] in ∆xZN ×∆tN,
“U0

β = u0” in ∆xZN ,

where
Lνh,1 + Lνh,2 ≈ L = Lσ + Lµ

ϕh ≈ ϕ
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Numerical schemes for (GPME)

Our framework includes
a mixture of implicit and explicit schemes (θ-methods);

the possibility of discretizing the singluar and nonsingular parts
of Lµ in different ways; and
combinations of the above.

Also:
Explicit methods only works for Lipschitz ϕ because of CFL. But, in
stead of doing implicit methods for “demanding” ϕ, we can do less
costly explicit methods with approximating ϕ.
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Convergence of the numerical schemes

The scheme defined by (NM) is
monotone,
(conservative if the ϕ’s involved are Lipschitz)
Lp-stable, and
consistent.

Theorem (Convergence, [del Teso&JE&Jakobsen, 2018])

For the interpolant Uh,∆t , we have

Uh,∆t → u in C ([0,T ]; L1
loc(RN)) as h,∆t → 0+

where u ∈ L1(QT ) ∩ L∞(QT ) ∩ C ([0,T ]; L1
loc(RN)) is a

distributional solution of (GPME).

Note that we only assume u0 ∈ L1 ∩ L∞.
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Proof of convergence

1. Since the operator and the nonlinearity are x-independent, the
numerical scheme is equivalent with

U j(x)−∆tLνh,1 [ϕ(U j)](x) = U j−1(x) + ∆tLνh,2 [ϕh(U j−1)](x).

2. At every time step, we have a combination of explicit and
implicit steps:

(EP) w −∆tLνh,1 [ϕ(w)] = f on RN ,

where U j = w = Timp[f ] and

f (x) = Texp[U j−1](x) = U j−1(x) + ∆tLνh,2 [ϕh(U j−1)](x).

3. Well-posedness of (NM) ⇐⇒ Well-posedness of (EP) and
properties of Texp.

4. To study Texp, the CFL-condition comes naturally

∆tLϕhνh,2(RN) ≤ 1 “time derivative ∼ spatial derivatives”
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Proof of convergence

5. Both operators Timp and Texp are “well-posed” in L1 ∩ L∞ and
enjoy

comparison principle;
L1-contraction; and
L1/L∞-stability.

6. All properties then carries over to the numerical scheme (NM).
7. In particular, we have equiboundedness and equicontinuity in

space.
8. In addition, we get equicontinuity in time (the Kružkov lemma).
9. An application of the Arzelà-Ascoli and Kolmogorov-Riesz

compactness theorems then gives the desired compactness and
convergence. BUT “only” in C ([0,T ]; L1

loc(RN)).
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Equitightness, uniform control at infinity

We want an estimate like

lim
R→∞

sup
h,∆t

ˆ
|x |≥R

|Uh,∆t(x , t)| dx = 0.

Recall the definition of distributional solutions, for
ψ ∈ C∞c (RN × [0,T ]),
ˆ
RN

u(x ,T )ψ(x ,T ) dx

=

ˆ T

0

ˆ
RN

(
u(x , t)∂tψ(x , t) + ϕ(u(x , t))L[ψ(·, t)](x)

)
dx dt

+

ˆ
RN

u0(x)ψ(x , 0) dx .

Choose ψ(x , t) = sign(u)XR(x).
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Equitightness, local diffusion

• Assume L = ∆ and ϕ is Lipschitz. Then

ˆ T

0

ˆ
RN

|ϕ(u(x , t))||L[XR ](x)| dx dt

≤ TLϕ‖u‖L1‖∆XR‖L∞ = TLϕ‖u‖L1
1
R2 ‖∆X‖L∞ .
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Equitightness, local diffusion

• Assume L = ∆ and ϕ is Lipschitz. Then

lim
R→∞

ˆ T

0

ˆ
RN

|ϕ(u(x , t))||L[XR ](x)| dx dt = 0.

• Assume L = ∆ and ϕ is γ-Hölder with γ ∈ (0, 1). Then

ˆ T

0

ˆ
RN

|ϕ(u(x , t))||L[XR ](x)| dx dt

≤ T |ϕ|C0,γ‖u‖Lqγ‖∆XR‖Lp = T |ϕ|C0,γ‖u‖Lqγ
1

R−
N
p

+2
‖∆X‖Lp .

We have to tune N, γ, p, q such that we have convergence, and we
get it when max{0,N−2}

N < γ < 1. (Extinction when
0 < γ < max{0,N−2}

N .)
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Equitightness, local diffusion

Assume L = Lµ such thatˆ
|z|≤1

(· · · ) dµ(z) ∼ ∆XR and
ˆ
|z|>R>1

(· · · ) dµ(z) ∼ −(−∆)
α
2 [XR ]

that is, is a differential operator of order α ∈ (0, 2). Then

• when ϕ is Lipschitz,

• when ϕ is γ-Hölder and max{0,N−α}
N < γ < 1,

lim
R→∞

ˆ T

0

ˆ
RN

|ϕ(u(x , t))||L[XR ](x)| dx dt = 0.
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Convergence, final

Theorem (Convergence, [del Teso&JE&Jakobsen, 2018])

For the interpolant Uh,∆t , we have

Uh,∆t → u in C ([0,T ]; L1(RN)) as h,∆t → 0+

where u ∈ L1(QT ) ∩ L∞(QT ) ∩ C ([0,T ]; L1(RN)) is a
distributional solution of (GPME).
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Simulations

• 1D (one-phase) Stefan problem with ϕ(u) = max{0, u − 0.5}.
Explicit method. L = −(−∂xx)

α
2 with α = 0.5, 1, 1.5.

• 2D (one-phase) Stefan problem with ϕ(u) = max{0, u − 1}.
Explicit method. L = ((1

2 ,
47
100) · D)2 + (−∂xx)

1
4 .
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Thank you for your attention!
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