Local and nonlocal diffusion Brownian motion and Lévy flights

Jørgen Endal

Department of mathematical sciences NTNU

13 December 2016

Informal Seminar, Institut Mittag-Leffler, Stockholm

▶ Pollen grains in water

What is diffusion (from a probabilistic viewpoint)?

What is diffusion (from a probabilistic viewpoint)?

Heat equation

$$\partial_t u = \frac{1}{2} \triangle u$$

A. EINSTEIN. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. *Annalen der Physik* (in German), 322(8): 549–560, 1905.

What is diffusion (from a probabilistic viewpoint)?

Heat equation

$$\partial_t u = \frac{1}{2} \triangle u$$

A. EINSTEIN. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. *Annalen der Physik* (in German), 322(8): 549–560, 1905.

Fractional heat equation

$$\partial_t u = -(-\triangle)^{\frac{\alpha}{2}} u$$
 with $\alpha \in (0,2)$

E. VALDINOCI. From the long jump random walk to the fractional Laplacian. *Bol. Soc. Esp. Mat. Apl. SeMA*, (49):33–44, 2009.

Singluar integral definition:

$$-(-\triangle)^{\frac{\alpha}{2}}\psi:=c_{N,\alpha}\int_{|z|>0}\Big(\psi(x+z)-\psi(x)-z\cdot D\psi(x)\mathbf{1}_{|z|\leq 1}\Big)\frac{\mathrm{d}z}{|z|^{N+\alpha}}.$$

Singluar integral definition:

$$-(-\triangle)^{\frac{\alpha}{2}}\psi:=c_{N,\alpha}\int_{|z|>0}\Big(\psi(x+z)-\psi(x)-z\cdot D\psi(x)\mathbf{1}_{|z|\leq 1}\Big)\frac{\mathrm{d}z}{|z|^{N+\alpha}}.$$

Fourier definition:

$$\mathcal{F}\{-(-\triangle)^{\frac{\alpha}{2}}\psi\} := -|\xi|^{\alpha}\mathcal{F}\{\psi\}.$$

Singluar integral definition:

$$-(-\triangle)^{\frac{\alpha}{2}}\psi:=c_{N,\alpha}\int_{|z|>0}\Big(\psi(x+z)-\psi(x)-z\cdot D\psi(x)\mathbf{1}_{|z|\leq 1}\Big)\frac{\mathrm{d}z}{|z|^{N+\alpha}}.$$

Fourier definition:

$$\mathcal{F}\{-(-\triangle)^{\frac{\alpha}{2}}\psi\} := -|\xi|^{\alpha}\mathcal{F}\{\psi\}.$$

Through harmonic extension:

$$\begin{cases} \triangle_{x}w(x,y) + \alpha^{2}c_{\alpha}^{\frac{2}{\alpha}}y^{2-\frac{2}{\alpha}}\partial_{y}^{2}w(x,y) = 0 & \text{for } y > 0, \\ w(x,0) = \psi(x), \\ \partial_{y}w(x,0) =: -(-\triangle)^{\frac{\alpha}{2}}\psi(x). \end{cases}$$

Singluar integral definition:

$$-(-\triangle)^{\frac{\alpha}{2}}\psi:=c_{N,\alpha}\int_{|z|>0}\Big(\psi(x+z)-\psi(x)-z\cdot D\psi(x)\mathbf{1}_{|z|\leq 1}\Big)\frac{\mathrm{d}z}{|z|^{N+\alpha}}.$$

Fourier definition:

$$\mathcal{F}\{-(-\triangle)^{\frac{\alpha}{2}}\psi\} := -|\xi|^{\alpha}\mathcal{F}\{\psi\}.$$

Through harmonic extension:

$$\begin{cases} \triangle_{x}w(x,y) + \alpha^{2}c_{\alpha}^{\frac{2}{\alpha}}y^{2-\frac{2}{\alpha}}\partial_{y}^{2}w(x,y) = 0 & \text{for } y > 0, \\ w(x,0) = \psi(x), \\ \partial_{y}w(x,0) =: -(-\triangle)^{\frac{\alpha}{2}}\psi(x). \end{cases}$$

General nonlocal diffusion operator

Consider, for $\psi \in C_c^{\infty}(\mathbb{R}^N)$,

$$\mathcal{L}^{\mu}[\psi](x) = \int_{|z|>0} \left(\psi(x+z) - \psi(x) - z \cdot D\psi(x) \mathbf{1}_{|z|\leq 1} \right) \mathrm{d}\mu(z)$$

where $\mu \ge 0$ is a Radon measure ("regular" Borel measure) satisfying

$$\int_{|z|>0} \min\{|z|^2, 1\} \,\mathrm{d}\mu(z) < \infty.$$

(Pictures taken from Wikipedia.)

Assume $b \in \mathbb{R}^N$ is a given vector, $a = (a_{ij})_{i,j}$ is a nonnegative definite matrix, and $\mu \geq 0$ is a Radon measure satisfying

$$\int_{|z|>0}\min\{|z|^2,1\}\,\mathrm{d}\mu(z)<\infty.$$

Assume $b \in \mathbb{R}^N$ is a given vector, $a = (a_{ij})_{i,j}$ is a nonnegative definite matrix, and $\mu \geq 0$ is a Radon measure satisfying

$$\int_{|z|>0}\min\{|z|^2,1\}\,\mathrm{d}\mu(z)<\infty.$$

Then any Lévy process has a generator given by

$$-b \cdot D\psi(x) + \frac{1}{2} \sum_{i,j=1}^{d} a_{ij} \frac{\partial^{2}}{\partial_{x_{i}} \partial_{x_{j}}} \psi(x)$$
$$+ \int_{|z|>0} \left(\psi(x+z) - \psi(x) - z \cdot D\psi(x) \mathbf{1}_{|z|\leq 1} \right) d\mu(z)$$

Assume $b \in \mathbb{R}^N$ is a given vector, $a = (a_{ij})_{i,j}$ is a nonnegative definite matrix, and $\mu \geq 0$ is a Radon measure satisfying

$$\int_{|z|>0}\min\{|z|^2,1\}\,\mathrm{d}\mu(z)<\infty.$$

Then any Lévy process has a generator given by

$$-b \cdot D\psi(x) + \frac{1}{2} \sum_{i,j=1}^{d} a_{ij} \frac{\partial^{2}}{\partial_{x_{i}} \partial_{x_{j}}} \psi(x)$$
$$+ \int_{|z|>0} \left(\psi(x+z) - \psi(x) - z \cdot D\psi(x) \mathbf{1}_{|z|\leq 1} \right) d\mu(z)$$

and, conversely, for any (b, a, μ) , there exists a Lévy process with the above generator.

Assume X is a Lévy process uniquely defined by (b, a, μ) . Then X decomposes uniquely as X = W + Y, where W is defined by (b, a, 0) and Y by $(0, 0, \mu)$.

Assume X is a Lévy process uniquely defined by (b, a, μ) . Then X decomposes uniquely as X = W + Y, where W is defined by (b, a, 0) and Y by $(0, 0, \mu)$.

That is, we can decompose the process X into a local and nonlocal part, or rather, into a Gaussian process and a purely discontinuous Lévy process.

As $\alpha \to 2^-$, the distributional solution of

$$\partial_t u + (-\triangle)^{\frac{\alpha}{2}} u^m = 0$$

converges in $C([0,T];L^1_{loc}(\mathbb{R}^N))$ to the distributional solution of

$$\partial_t u - \triangle u^m = 0.$$

F. DEL TESO, JE, AND E. R. JAKOBSEN. Uniqueness and properties of distributional solutions of nonlocal equations of porous medium type. *Adv. Math.*, 305:78–143, 2017.

Recall that

$$\mathcal{L}^{\mu}[\psi](x) = \int_{|z|>0} \left(\psi(x+z) - \psi(x) - z \cdot D\psi(x) \mathbf{1}_{|z|\leq 1} \right) \mathrm{d}\mu(z).$$

Recall that

$$\mathcal{L}^{\mu}[\psi](x) = \int_{|z|>0} \left(\psi(x+z) - \psi(x) - z \cdot D\psi(x) \mathbf{1}_{|z|\leq 1} \right) \mathrm{d}\mu(z).$$

For the choice

$$\mu_h(z) := \frac{1}{h^2} \left(\delta_h(z) + \delta_{-h}(z) \right),$$

Recall that

$$\mathcal{L}^{\mu}[\psi](x) = \int_{|z|>0} \left(\psi(x+z) - \psi(x) - z \cdot D\psi(x) \mathbf{1}_{|z|\leq 1} \right) \mathrm{d}\mu(z).$$

For the choice

$$\mu_h(z) := \frac{1}{h^2} \left(\delta_h(z) + \delta_{-h}(z) \right),$$

we have

$$\mathcal{L}^{\mu_h}[\psi](x) = \frac{1}{h^2} \left(\psi(x+h) + \psi(x-h) - 2\psi(x) \right).$$

Recall that

$$\mathcal{L}^{\mu}[\psi](x) = \int_{|z|>0} \left(\psi(x+z) - \psi(x) - z \cdot D\psi(x) \mathbf{1}_{|z|\leq 1} \right) \mathrm{d}\mu(z).$$

Recall that

$$\mathcal{L}^{\mu}[\psi](x) = \int_{|z|>0} \left(\psi(x+z) - \psi(x) - z \cdot D\psi(x) \mathbf{1}_{|z|\leq 1} \right) \mathrm{d}\mu(z).$$

For the choice

$$\mu_h(z) := \sum_{\alpha \neq 0} \mu(z_d + R_h) \delta_{z_d}(z),$$

Recall that

$$\mathcal{L}^{\mu}[\psi](x) = \int_{|z|>0} \left(\psi(x+z) - \psi(x) - z \cdot D\psi(x) \mathbf{1}_{|z|\leq 1} \right) d\mu(z).$$

For the choice

$$\mu_h(z) := \sum_{\alpha \neq 0} \mu(z_d + R_h) \delta_{z_d}(z),$$

we have

$$\mathcal{L}^{\mu_h}[\psi](x) = \sum_{\alpha \neq 0} \left(\psi(x + z_d) - \psi(x) \right) \mu(z_d + R_h).$$

Thank you for your attention!