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https://www.youtube.com/watch?v=R5t-oA796to

What is diffusion (from a probabilistic viewpoint)?
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What is diffusion (from a probabilistic viewpoint)?

Heat equation

1
6tu = EAU

@ A. EinsTEIN. Uber die von der molekularkinetischen Theorie der Wirme geforderte Bewegung

von in ruhenden Fliissigkeiten suspendierten Teilchen. Annalen der Physik (in German), 322(8):
549-560, 1905.
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What is diffusion (from a probabilistic viewpoint)?

Heat equation

1
6tu = EAU

@ A. EinsTEIN. Uber die von der molekularkinetischen Theorie der Wirme geforderte Bewegung

von in ruhenden Fliissigkeiten suspendierten Teilchen. Annalen der Physik (in German), 322(8):
549-560, 1905.

Fractional heat equation

u=—(=A)2u  with a€(0,2)

@ E. VavLpinoci. From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat.
Apl. SeMA, (49):33-44, 2009.
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Ten equivalent definitions of the fractional Laplace operator

Singluar integral definition:
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Ten equivalent definitions of the fractional Laplace operator

Singluar integral definition:
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Ten equivalent definitions of the fractional Laplace operator

Singluar integral definition:

Fourier definition:
F{—(=0)2¢} = —[¢]*F{u}.

Through harmonic extension:

2
Dew(x,y) + azc&’yz_%@}%w(x,y) =0 fory >0,

w(x,0) = ¥(x),
dyw(x,0) =: —(—A)29(x).
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Ten equivalent definitions of the fractional Laplace operator

Singluar integral definition:

Fourier definition:
F{—(=0)2¢} = —[¢]*F{u}.

Through harmonic extension:

2
Dew(x,y) + azc&’yz_%@}%w(x,y) =0 fory >0,

w(x,0) = ¥(x),
dyw(x,0) =: —(—A)29(x).

@ M. Kwa3sNIcKI. Ten equivalent definitions of the fractional Laplace operator. Preprint, 2015.
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General nonlocal diffusion operator

Consider, for 1y € C=(RN),

o) = |

|z|>0

(¥0x+2) = $(x) = 2+ DY) z1<1 ) du(2)
where 1 > 0 is a Radon measure (“regular” Borel measure)

satisfying
/ min{|z|?, 1} du(z) < .
|z|>0
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Why do we want to study such operators?

Symmetric a-stable densities,p=0,y=1,5=0
T T T T T T

T
a=05
a=1.0

0.6 a=15|

T a=20
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Why do we want to study such operators?

(Pictures taken from Wikipedia.)
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Why do we want to study such operators?

Assume b € RN is a given vector, a = (a;);; is a nonnegative
definite matrix, and x> 0 is a Radon measure satisfying

/ min{|z|?,1} du(z) < oo.
|z|>0
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Why do we want to study such operators?

Assume b € RN is a given vector, a = (a;);; is a nonnegative
definite matrix, and x> 0 is a Radon measure satisfying

/ min{|z|?,1} du(z) < oo.
|z|>0

Then any Lévy process has a generator given by

— b Dip(x Z"“aa

I,Jl

i /|z|>o (1/J(x +2z)—P(x) -z Dw(x)hz'fl) du(z)
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Why do we want to study such operators?

Assume b € RN is a given vector, a = (a;);; is a nonnegative
definite matrix, and x> 0 is a Radon measure satisfying

/ min{|z|?,1} du(z) < oo.
|z|>0

Then any Lévy process has a generator given by

— b Dip(x Z"“aa (x)

i /|z|>o (1/J(x +2z)—P(x) -z Dw(x)hz'fl) du(z)

and, conversely, for any (b, a, i), there exists a Lévy process with
the above generator.

@ D. APPLEBAUM. Lévy Processes and Stochastic Calculus. Cambridge University Press,
Cambridge, UK, 2009.
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Why do we want to study such operators?

Assume X is a Lévy process uniquely defined by (b, a, ). Then X
decomposes uniquely as X = W + Y, where W is defined by
(b,a,0) and Y by (0,0, u).
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Why do we want to study such operators?

Assume X is a Lévy process uniquely defined by (b, a, ). Then X
decomposes uniquely as X = W + Y, where W is defined by
(b,a,0) and Y by (0,0, u).

That is, we can decompose the process X into a local and nonlocal
part, or rather, into a Gaussian process and a purely discontinuous
Lévy process.
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Why do we want to study such operators?

As oo — 27, the distributional solution of
deu+ (—A)2u™ =0
converges in C([0, T]; LL _(RN)) to the distributional solution of

loc

Oy — Au™ = 0.

@ F. peL TEso, JE, anp E. R. JAKOBSEN. Uniqueness and properties of distributional solutions
of nonlocal equations of porous medium type. Adv. Math., 305:78-143, 2017.
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Some surprising nonlocal operators

Recall that

e = |

|z|>0

(V0 +2) = 6(x) = 2+ DY()Ljz1<1 ) du(2).
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Some surprising nonlocal operators

Recall that

e = |

|z|>0

(V0 +2) = 6(x) = 2+ DY()Ljz1<1 ) du(2).
For the choice

h(2) 1= 2 (5n(2) + 5_4(2)
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Some surprising nonlocal operators

Recall that

e = |

|z|>0

(V0 +2) = 6(x) = 2+ DY()Ljz1<1 ) du(2).
For the choice

h(2) 1= 2 (5n(2) + 5_4(2)
we have

£ 10](x) = i (V0 + B) + 0 — h) — 20(x)).
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Some surprising nonlocal operators

Recall that

e = |

|z|>0

(¥0c+2) = ¥(x) = 2 DY()Lje11 ) du(z):
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Some surprising nonlocal operators

Recall that

e = |

|z|>0

(¥0c+2) = ¥(x) = 2 DY()Lje11 ) du(z):
For the choice

un(z) =Y 1(za + Ri)dz,(2),
a#0
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Some surprising nonlocal operators

Recall that

e = |

|z|>0

(¥0c+2) = ¥(x) = 2 DY()Lje11 ) du(z):
For the choice

pn(2) =Y p(za + Ra)dzy(2),
a#0

we have

LE)(x) = D ((x + 2g) = ©(x)) i(zg + Ry)-
a#0
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Thank you for your attention!
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