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Introduction

We study the following Cauchy problem (heat or diffusion equation)

(1)

o = SAu (x,1) € R? x (0, 00)
u(x,0) = do(x) x R ’

where 4§y is the Dirac delta centered at the origin. A solution of (1)
is called a fundamental solution.
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Fundamental solution
Let ]
o(&) = F(9)(&) = ——

(€) (#)(§) 2n)?
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Fundamental solution
Let

3(&) = F()(&) =

—i&-x
(277)% /Rde o(x) dx,
then F(A$)(€) = —|€2F(4)(€) (integration by parts).
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Fundamental solution

Let
2 P _ 1 —i§~X
e = 7N = o [ e obax

then F(A$) (&) = —|€[PF(¢)(€) (integration by parts). Taking the
Fourier transform of (1) yields
ou 1 5.
Bf —élf\ u
o(&, 1) = Ce2¢F,
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Fundamental solution

Let
2 P _ 1 —i§~X
e = 7N = o [ e obax

then F(A$) (&) = —|€[PF(¢)(€) (integration by parts). Taking the
Fourier transform of (1) yields

80_ 1 04
E——élé\ u

b(e. 1) = Ce21¢F,
and using that F(do) = (27r)*% we get
b(e, 1) = (2m)2e2ll, (2)
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Fundamental solution

Now, take the Fourier inverse of (2)
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Fundamental solution

Now, take the Fourier inverse of (2) (don’t worry i(-, t) € S(RY))
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Fundamental solution

Now, take the Fourier inverse of (2) (don’t worry i(-, t) € S(RY))
u(x, 1) =F~"((2m)~2e 21 (x)
—(2n)¢ / e (27)~ o1 g

Rd 3)
1 1
= Se
(2mt)2
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Fundamental solution

Now, take the Fourier inverse of (2) (don’t worry i(-, t) € S(RY))
u(x, 1) =F~"((2m)~2e 21 (x)
—(2n)¢ / e (27)~ o1 g

Rd 3)
1 _x2
= g e 2
(2mt)2

Hopefully this is a well-known function!
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Fundamental solution

Now, take the Fourier inverse of (2) (don’t worry i(-, t) € S(RY))
u(x, 1) =F~"((2m)~2e 21 (x)
—(2r)"% / ei€x(2r) "2zt q¢

Rd 3)
1 _x2
= g e 2
(2mt)2

Hopefully this is a well-known function! It is e.g. the probability
density function of the normal distribution (with . = 0 and £ = tl).
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Normal distribution (or Gaussian
distribution) with . =0 and { = 1
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Family of probability measures

Consider the family {Q:, t > 0} where "Q:( dx) = g:(x) dx".
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Family of probability measures

Consider the family {Q;, t > 0} where "Q;(dx) = gi(x) dx". Then
this family is a family of probability measures if q:(x) := u(x, t)
satisfies

i) g:(x) is non-negative; and

i) [pa Qqt(x)dx =1,
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Family of probability measures

Consider the family {Q;, t > 0} where "Q;(dx) = gi(x) dx". Then
this family is a family of probability measures if g:(x) := u(x, f)
satisfies

i) g:(x) is non-negative; and

i) [pa Qqt(x)dx =1,
and it does.

NTNU
Norwegian University of
Science and Technology

, Walking randomly in the realm of partial differential equations and probability theory

\
\

www.ntnu.no



Family of probability measures

Consider the family {Q;, t > 0} where "Q;(dx) = gi(x) dx". Then
this family is a family of probability measures if q:(x) := u(x, t)
satisfies

i) g:(x) is non-negative; and

i) [pa Qqt(x)dx =1,
and it does. In addition, g;(x) satisfies

i) gr+s(x) = (gt * gs)(x); and

iv) Q: is weakly convergent to dp.
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Family of probability measures

Consider the family {Q;, t > 0} where "Q;(dx) = gi(x) dx". Then
this family is a family of probability measures if q:(x) := u(x, t)
satisfies

i) g:(x) is non-negative; and
i) [pa Qqt(x)dx =1,
and it does. In addition, g;(x) satisfies
iii) qr+-s(x) = (gt * gs)(x); and
iv) Q: is weakly convergent to dp.
(All of these properties can be proved using (3).)
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Random variable

(Q, F, P) is called a probability space.
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Random variable

(Q, F, P) is called a probability space.

—X
e—x°/2

If Q =R, F =B(R)and P(A) = [, 7= dm, then we have the
normal distribution with . = 0 and ¢2 = 1.
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Random variable

(Q, F, P) is called a probability space.

e—¥2/2

If Q =R, F =B(R)and P(A) = [, N
normal distribution with . = 0 and ¢2 = 1.

dm, then we have the

Definition
X : Q — RYis a random variable if X is 7 measurable (i.e.,
(F, B(RY)) measurable).
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Random variable

(Q, F, P) is called a probability space.

—X
e—x°/2

If Q =R, F =B(R)and P(A) = [, N
normal distribution with . = 0 and ¢2 = 1.

dm, then we have the

Definition
X : Q — RYis a random variable if X is 7 measurable (i.e.,
(F, B(RY)) measurable).

Think of this as assigning a number to each outcome of an
experiment.
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Stochastic process

A stochastic process is parametrized collection of random
variables

{Xt}ter
defined on a probability space (€2, F, P) and assuming values in
RY.

NTNU
Norwegian University of
Science and Technology

, Walking randomly in the realm of partial differential equations and probability theory




Stochastic process

Definition
A stochastic process is parametrized collection of random

variables
{Xttter

defined on a probability space (€2, F, P) and assuming values in
RY.

Note that X; = Xi(w) where w € Q.
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Stochastic process

Definition

A stochastic process is parametrized collection of random

variables

{Xt}ter
defined on a probability space (€2, F, P) and assuming values in
RY.

Note that X; = Xi(w) where w € Q. Here it is useful to think of t as
time, and w as a particle (or an experiment). Then t — X;(w) would
represent the position (or the result) as a function of time t of the
particle (experiment) w.
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Transition probabilities

Foreach 0 < s < t < oo, B € B(RY), x € RY, we define
Ps.t(x, B) = P(X; € B|Xs = x)

as the transition probability.
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Transition probabilities

Foreach 0 < s < t < oo, B € B(RY), x € RY, we define
Ps.t(x, B) = P(X; € B|Xs = x)
as the transition probability.

Note that Ps; gives the probability of going from the point x at time
s to the set B at time t.
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Chapman-Kolmogorov equations

If we let
ly—x|?

Ps1(x, dy) = qr_s(y — x)dy = (2n(t — 5))"2e~ 29 dy,
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Chapman-Kolmogorov equations

If we let
ly—x|?

d _ ,
Pst(x, dy) = qr-s(y — x)dy = (27 (t — 5))"2e 29 dy,
or equivalently

Ps1(x, B) — /B Grs(y — x)dy.
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Chapman-Kolmogorov equations

If we let
ly—x|?

d _
Pst(x, dy) = gi—s(y — x)dy = (2r(t — s))"2ze 29 dy,
or equivalently
Ps.i(x, B) = /B g s(y — x)dy,

then the transition probabilities satisfies (remember that
Gt+s = Gt * Qs)

Py(x, B) = /R Pody, BPs(x, dy) (4)

forall 0 < r<s<t<oo xeR? and B e B(RY).
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Chapman-Kolmogorov equations

If we let
ly—x|?

d _ ,
Pst(x, dy) = qr-s(y — x)dy = (27 (t — 5))"2e 29 dy,
or equivalently

Ps1(x, B) — /B Grs(y — x)dy.

then the transition probabilities satisfies (remember that
Gt+s = Gt * Qs)

Py(x, B) = /R Pody, BPs(x, dy) (4)

forall0 < r<s<t<oo xR and B € B(RY). Note that (4)
says that the probability of going from x to dy is independent of

. NTNU
going from dy to B. B Norwegian University of

Science and Technology
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Finite-dimensional distribution

For0 <t <...<t,wedefine a measure vy, ¢, by
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Finite-dimensional distribution

For0 <t <...< t, we define a measure v, ___;, by
Vl‘17---,tn(B1 X - x Bp)
= / ay (X1) e Qty—t,_ (Xn — Xp—1 ) dxq ... dxp
By x...xBp

g _Ixl? (5)
:/ (2r(t))"ze %
By x...xBp
xn—xq_1 12

e @r(ty — th_q)) e 1) dxy ... dxp.
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Finite-dimensional distribution

For0 <t <...<t,wedefine a measure vy, ¢, by
V... ta(Br X - X Bp)

- / at(X1) - Qty—t, 1 (Xn — Xp—1) dxy ... dxp
By x...xBp

g _Ixl? (5)
:/ (2r(t))"ze %
By x...xBp
xn—xq_1 12

e @r(ty — th_q)) e 1) dxy ... dxp.

Note that vy, ..+, answers the question "what is the probability of
X, € By, and, ..., and X;, € B,?". Hence, it is closely related to
transition probabilities.
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Kolmogorov’s existence theorem

Given a family of probability measures {v, ... 1,,t € Rt and n € N}
satisfying the Kolmogorov consistency criteria. Then there exists a
probability space (2, F, P) and a stochastic process {X}t>o on Q;
X : Q — RY such that

v, t.(By X --- x Bp) = P(Xt, € By,..., X, € Bp),

forallt; € R™, k € N and all Borel sets B;.
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Existence of a stochastic process

We "know" that vy, . 1, defined by (5) satisfies Kolmogorov’s
consistency criteria. Hence, there exists a stochastic process
{Xt}t>0 on Q such that
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Existence of a stochastic process

We "know" that vy, . 1, defined by (5) satisfies Kolmogorov’s
consistency criteria. Hence, there exists a stochastic process
{Xt}t>0 on Q such that

vt ..., tn(B1X--~><Bn):P(Xt1EB-],...,thEBn),
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Existence of a stochastic process

We "know" that vy, . 1, defined by (5) satisfies Kolmogorov’s
consistency criteria. Hence, there exists a stochastic process
{Xt}t>0 on Q such that

V...,

tn(B1 X oo X Bn):P()(t1 €B1,...,thEBn),

that is, the stochastic process X; has vy, .. 1, as its finite
dimensional distribution.
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Brownian motion

A stochastic process B; : Q2 x [0, 00) — RY is called Brownian
motion if

i) Bp=0
i) By, — Bt,_, is N(O, (th — th—1)])
i) By,,...,Bt, — B, , is independent
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Brownian motion

A stochastic process B; : Q2 x [0, 00) — RY is called Brownian
motion if

i) Bp=0
i) By, — Bt,_, is N(O, (th — th—1)])
i) By,,...,Bt, — B, , is independent

The process X; with finite dimensional distribution given by (5)
satisfies all of these axioms!
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Brownian motion

A stochastic process B; : Q2 x [0, 00) — RY is called Brownian
motion if

i) Bp=0
i) By, — Bt,_, is N(O, (th — th—1)])
i) By,,...,Bt, — B, , is independent

The process X; with finite dimensional distribution given by (5)
satisfies all of these axioms! That is, we have constructed
Brownian motion using the fundamental solution of (1).
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Why??

Let us write down the finite dimensional distribution

_x 2

[ ey e
By x...xBp
|Xn7Xn71 ‘2

e (@7(ty — th_q))"2e A1) dxq ... dxp.
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Why??

Let us write down the finite dimensional distribution

_x 2

[ ey e
By x...xBp
‘Xn7Xn71 ‘2

e (@7(ty — th_q))"2e A1) dxq ... dxp.

Consider the first axiom; By = 0.
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Why??

Let us write down the finite dimensional distribution

Ix12

[ ety e
By x...xBp
Ixn—x,_1 12

e (@n(ty — th_q)) e 1) dxy ... dxp.
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Why??

Let us write down the finite dimensional distribution

Ix12

[ ety e
By x...xBp
Ixn—x,_1 12

e (@n(ty — th_q)) e 1) dxy ... dxp.

Consider the second axiom; B;, — B, _, is N(0, (tn — th—1)/).
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Why??

Let us write down the finite dimensional distribution

CIxyl?

d
[ ety e
By x...xBp
|XI7_X/771 ‘2

o @r(ty — th_q))"2e 1) dxy ... dxp.
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Why??

Let us write down the finite dimensional distribution

CIxyl?

[ ety e
By x...xBp
‘Xn_xn71 ‘2

o @r(ty — th_q))"2e 1) dxy ... dxp.

Consider the third axiom; By, ..., By, — B;,_, is independent.
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Figure of Brownian motion in R’
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Properties of Brownian motion

Brownian motion (or a version of Brownian motion) has these
properties
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Properties of Brownian motion

Brownian motion (or a version of Brownian motion) has these
properties

i) forall0 < #,...,< t,the random variable Z = (By,, ..., B;,) is
multinormal distributed;
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Properties of Brownian motion

Brownian motion (or a version of Brownian motion) has these
properties

i) forall0 < #,...,< t,the random variable Z = (By,, ..., B;,) is
multinormal distributed;

ii) the function t — B;j(w) is continuous;
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Properties of Brownian motion

Brownian motion (or a version of Brownian motion) has these
properties
i) forall0 < #,...,< t,the random variable Z = (By,, ..., B;,) is
multinormal distributed;

ii) the function t — B;j(w) is continuous;
iii) the function t — B;(w) continuous is nowhere differentiable;
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Properties of Brownian motion

Brownian motion (or a version of Brownian motion) has these
properties

i) forall0 < #,...,< t,the random variable Z = (By,, ..., B;,) is
multinormal distributed;

ii) the function t — B;j(w) is continuous;
iii) the function t — B;(w) continuous is nowhere differentiable;

iv) the function t — B;(w) continuous has infinite variation on each
interval (of t); and
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Properties of Brownian motion

Brownian motion (or a version of Brownian motion) has these
properties

i) forall0 < #,...,< t,the random variable Z = (By,, ..., B;,) is
multinormal distributed;

ii) the function t — B;j(w) is continuous;
iii) the function t — B;(w) continuous is nowhere differentiable;

iv) the function t — B;(w) continuous has infinite variation on each
interval (of t); and

V) %Bczt is also a Brownian motion; it is scalar invariant.
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Pollen particles

In 1827, Robert Brown studied pollen grains suspended in water
under a microscope.

. " .
o
™ .o °
™
™
e °°% o *
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Pollen particles

He noticed that the path created by a single pollen particle was
very irregular.
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Pollen particles

He noticed that the path created by a single pollen particle was
very irregular. To exclude life-like motion, the experiment was
repeated with non-organic material. The result was, indeed, the

same.
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Pollen particles

He noticed that the path created by a single pollen particle was
very irregular. To exclude life-like motion, the experiment was
repeated with non-organic material. The result was, indeed, the
same.

In 1905, Albert Einstein considered the density of Brownian
particles. He showed that the density satisfies (1) up to some
constant.
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Pollen particles

He noticed that the path created by a single pollen particle was
very irregular. To exclude life-like motion, the experiment was
repeated with non-organic material. The result was, indeed, the
same.

In 1905, Albert Einstein considered the density of Brownian
particles. He showed that the density satisfies (1) up to some

constant.

We then know that the path of one of these particles w will be given
by (Bi(t,w), Bo(t,w)); two dimensional Brownian motion.
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Pollen particles
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Kolmogorov’s forward equation

(Also called the Fokker-Planck equation.)
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Kolmogorov’s forward equation

(Also called the Fokker-Planck equation.)

Assume that B; has a nice, smooth transition probability density
ps.t(X,y), that is,

PBi< BB = 0) = [ puil0.y)dy VB BEY),
B
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Kolmogorov’s forward equation

(Also called the Fokker-Planck equation.)

Assume that B; has a nice, smooth transition probability density
ps.t(X,y), that is,

PBi< BB = 0) = [ puil0.y)dy VB BEY),
B

Then this density will satisfy

{&p =3Ap  (y.1) €RY X (0,00)
Po(0,y) =do(y) (y,t) € R x {0}
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Fractional Laplace

We turn our attention to the following Cauchy problem (heat or
diffusion equation)

: (6)

ou=—(—A)zu (x,t) e RY x (0, 00)
u(x,0) =d(x) xcR?
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Fractional Laplace

We turn our attention to the following Cauchy problem (heat or
diffusion equation)

{a,u:( A)zu (x,1) € RY x (0,00) €

(x,0) =dg(x) xecR?

where g is the Dirac delta centered at the origin,
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Fractional Laplace

We turn our attention to the following Cauchy problem (heat or
diffusion equation)

: (6)

ou=—(—A)zu (x,t) e RY x (0, 00)
u(x,0) =d(x) xcR?

where d; is the Dirac delta centered at the origin, and —(—A)? is
defined by the Fourier transform

F(=(=D)2¢)(&) = —|¢*F(#)(€) (7)
for all ¢ € S(RY).
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Fractional Laplace

We turn our attention to the following Cauchy problem (heat or
diffusion equation)

: (6)

ou=—(—A)zu (x,t) e RY x (0, 00)
u(x,0) =d(x) xcR?

where d; is the Dirac delta centered at the origin, and —(—A)? is
defined by the Fourier transform

F(—(—=D)26)(&) = —[¢]*F(¢)(€) (7)

for all ¢ € S(RY). Note that the (7) is consistent with the Fourier
transform of A.

NTNU
Norwegian University of
Science and Technology

, Walking randomly in the realm of partial differential equations and probability theory

\
\

www.ntnu.no



Lévy processes

By more theoretically advanced theory, we can do similar
computations as in the case of the Laplace operator.
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Lévy processes

By more theoretically advanced theory, we can do similar
computations as in the case of the Laplace operator. These
computations will show that we can obtain «a-stable isotropic
(rotationally invariant) Lévy processes from the fundamental
solution of (6),
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Lévy processes

By more theoretically advanced theory, we can do similar
computations as in the case of the Laplace operator. These
computations will show that we can obtain «a-stable isotropic
(rotationally invariant) Lévy processes from the fundamental
solution of (6), where the fundamental solution is given by

u(x, t) = F1((2r)"2e 1) (x) a e (0,2).
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Lévy processes

By more theoretically advanced theory, we can do similar
computations as in the case of the Laplace operator. These
computations will show that we can obtain «a-stable isotropic
(rotationally invariant) Lévy processes from the fundamental
solution of (6), where the fundamental solution is given by

u(x, t) = F1((2r)"2e 1) (x) a e (0,2).

Observe that if we take o = 2 in the above equation, we get
Brownian motion up to some constant (there is a one-half missing).
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a~stable distributions with 1 =0

Symmetric a-stable densities,p=0,y=1,6=0
T T T T T

a=05
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Figures of Lévy processes
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Figures of Lévy processes

harmal-nverse-Gaussian
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Figures of Lévy processes

double exponential
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Figures of Lévy processes

VENIANCE garmiia.
L& T T T T T T T T T

04t ]

(RS -

02k <

IRES -

. . NTNU
Picture due to A. Meucci (2009). B Norwegian University of

Science and Technology

, Walking randomly in the realm of partial differential equations and probability theory



The Black-Scholes option pricing model

Let us look at an European call option. That is, the right to buy one
stock for K NOK at a fixed time T > t. We call K the strike price
(the agreed price) and S; the spot price (the price of the stock at
time t). If we are lucky we earn St — K NOK, so the pay-off is

max{St — K, 0}.
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The Black-Scholes option pricing model

Let us look at an European call option. That is, the right to buy one
stock for K NOK at a fixed time T > t. We call K the strike price
(the agreed price) and S; the spot price (the price of the stock at
time t). If we are lucky we earn St — K NOK, so the pay-off is
max{St — K, 0}.

The problem is how much does this European call option cost? Or,
how do we get a good estimate on S;?
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The Black-Scholes option pricing model

Stock price NAS
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The Black-Scholes option pricing model

In 1997, Fischer Black and Myron Scholes won the Nobel Prize in
Economics for the equation
W 2ROV 1S9 V=0 telo,T)
V(S,T)= max{S K,O} t=T

where V = V(S, 1) is the price of the option, r is the risk-free
interest rate, and o is the volatility of the stock.
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The Black-Scholes option pricing model

In 1997, Fischer Black and Myron Scholes won the Nobel Prize in
Economics for the equation

aa\{+as28 +rS —rv=0 tel0,7)
V(S,T) = max{S — K,O} t=T

)

where V = V(S, 1) is the price of the option, r is the risk-free
interest rate, and o is the volatility of the stock.

The solution of this problem is given by the Feynman-Kac formula

V(S,t) = E [e "7 max{St* — K,O}] .
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The Black-Scholes option pricing model

In the previous slide, S; was actually modelled as geometric
Brownian motion:
dS; = rS;dt + 0 S; dB;.
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The Black-Scholes option pricing model

In the previous slide, S; was actually modelled as geometric

Brownian motion:
dS; = rS;dt + 0 S; dB;.

This model has a lot of weaknesses. One crucial example is that
Browninan motion has a continuous version; so, this model cannot
model sudden jumps in price
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The Black-Scholes option pricing model

In the previous slide, S; was actually modelled as geometric

Brownian motion:
dS; = rS;dt + 0 S; dB;.

This model has a lot of weaknesses. One crucial example is that
Browninan motion has a continuous version; so, this model cannot
model sudden jumps in price (which we know occurs in real life).
Furthermore, since the tail of a gaussian distribution is very thin,
the probability of extreme events is very low.

This is where Lévy processes enter. We allow sudden
discontinuous jumps in such processes, and this is a very useful
tool when modelling stock prices.
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The Black-Scholes option pricing model

As a consequence of this fact, it is common nowadays (at least in
finance) to add

/ X+ y, 1) — u(x, 1) — (& — 1)axu(x, v dy)
ly|>0

to the Black-Scholes equation.
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The Black-Scholes option pricing model

As a consequence of this fact, it is common nowadays (at least in
finance) to add

/ X+ y, 1) — u(x, 1) — (& — 1)axu(x, v dy)
ly|>0

to the Black-Scholes equation. Note that v is a positive Radon
measure at least satisfying

/ min{y[2, 1}u(dy).
R\{0}
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The Black-Scholes option pricing model

As a consequence of this fact, it is common nowadays (at least in
finance) to add

/ X+ y, 1) — u(x, 1) — (& — 1)axu(x, v dy)
ly|>0

to the Black-Scholes equation. Note that v is a positive Radon
measure at least satisfying

/ min{y[2, 1}u(dy).
R\{0}

The solution is still given by a formula similar to Feynman-Kac’, but
St is now a Lévy process.
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