What is a solution of a PDE? Current concepts used in research beyond classical solutions, why are they needed, how are they related. Trial lecture

Jørgen Endal

Department of mathematical sciences NTNU

01 September 2017

Nonlinear partial differential equations

All happy families resemble one another, but each unhappy family is unhappy in its own way.

— Tolstoy, Anna Karenina

Nonlinear partial differential equations

In contrast to the well-understood (and well-studied) classes of linear partial differential equations, each nonlinear equation presents its own particular difficulties.

- Holden & Risebro, Front Tracking for Hyperbolic Conservation Laws

Scalar conservation laws

Consider the Cauchy problem

(SCL)
$$\begin{cases} \partial_t u + \partial_x (F(u)) = 0 & \text{in} \quad \mathbb{R} \times (0, \infty), \\ u(x, 0) = u_0(x) & \text{on} \quad \mathbb{R}, \end{cases}$$

where

$$F, u_0 : \mathbb{R} \to \mathbb{R}$$

are functions to be determined.

Contents

- 1 Motivation and applications of the equation
- 2 Classical solutions
- 3 Method of characteristics
- 4 Distributional solutions
- 5 Entropy solutions
- 6 Kinetic solutions

Motivation and applications of the equation

Classical solutions Method of characteristics Distributional solutions Entropy solutions Kinetic solutions

Why do we study (SCL)?

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{x_1}^{x_2}u(x,t)\,\mathrm{d}x=F(u(x_1,t))-F(u(x_2,t))$$

What do we want from a solution? Classical well-posedness

Mathematical models of physical phenomena should have properties such that

- a solution exists;
- the solution is unique; and
- the solution's behaviour changes continuously with the initial conditions.

Definition of classical solutions

Definition (0 Classical solutions)

Assume $u_0 \in C^1(\mathbb{R})$ and $F \in C^1(\mathbb{R})$. A function $u \in C^1(\mathbb{R} \times [0,\infty))$ is called a classical solution of (SCL) if it satisfies the problem pointwise everywhere.

Do classical solutions exist?

Method of characteristics: $t = t(\xi, \eta)$, $x = x(\xi, \eta)$, $z = z(\xi, \eta)$

$$\begin{cases} \partial_{\xi}t = 1, \quad \partial_{\xi}x = u, \quad \partial_{\xi}z = 0\\ t(0,\eta) = 0, \quad x(0,\eta) = \eta, \quad z(0,\eta) = u_0(\eta) \end{cases}$$

$$u(x,t) = z(\xi(x,t),\eta(x,t))$$

Implicit function theorem yields $u_0'(\eta)t + 1 \neq 0 \iff u_0' \geq 0.$

$$t^* = -\frac{1}{u_0'(\tilde{x})}$$

Definition of distributional solutions

Definition (1 Distributional solutions)

Assume $u_0 \in L^1_{loc}(\mathbb{R})$ and $F \in W^{1,\infty}_{loc}(\mathbb{R})$. A function $u \in L^1_{loc}(\mathbb{R} \times (0,\infty))$ is called a distributional solution of (SCL) if

$$\partial_t u + \partial_x F(u) = 0$$
 in $\mathcal{D}'(\mathbb{R} \times [0,\infty))$.

$$\iint_{\mathbb{R}\times(0,\infty)} u\partial_t \phi + F(u)\partial_x \phi \,\mathrm{d}x \,\mathrm{d}t = 0 \qquad \forall \phi \in C^\infty_{\mathsf{c}}(\mathbb{R}\times(0,\infty))$$

$$x'(t)(u_l - u_r) = F_l - F_r$$
 where $x(t)$ is a shock wave

Nonuniqueness

Consider (SCL) with $F(u) = \frac{1}{2}u^2$ with the initial data

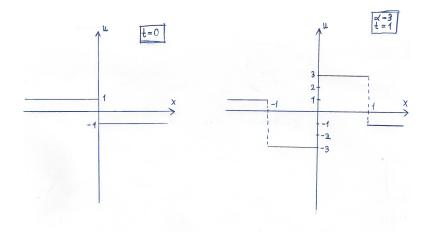
$$u_0(x) = \begin{cases} 1, & x < 0, \\ -1, & x > 0. \end{cases}$$

For each $\alpha \geq 1$,

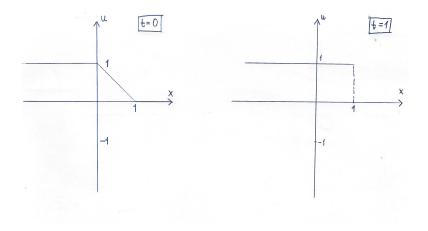
$$u(x,t) = \begin{cases} 1, & 2x < (1-\alpha)t, \\ -\alpha, & (1-\alpha)t < 2x < 0, \\ \alpha, & 0 < 2x < (\alpha-1)t, \\ -1, & (\alpha-1)t < 2x, \end{cases}$$

is a distributional solution.

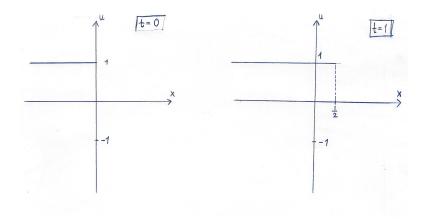
Nonuniqueness



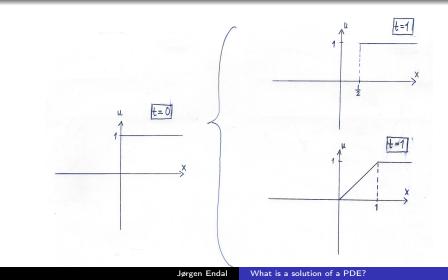
Too many solutions



Too many solutions



Too many solutions



Definition of entropy solutions

Definition (2 Entropy solutions)

Assume $u_0 \in L^{\infty}(\mathbb{R})$ and $F \in W^{1,\infty}_{loc}(\mathbb{R})$. A function $u \in L^{\infty}(\mathbb{R} \times (0,\infty))$ is called an entropy solution of (SCL) if for all entropy-entropy flux pairs (η, q) , we have

$$\partial_t \eta(u) + \partial_x q(u) \leq 0 \quad \text{in} \quad \mathcal{D}'_+(\mathbb{R} \times [0,\infty)).$$

Enough to take

$$\eta(u) = |u - k|$$
 and $q(u) = \operatorname{sign}(u - k)(F(u) - F(k))$

for all $k \in \mathbb{R}$.

Uniqueness

Theorem (Kružkov, 1970)

Assume $u_0 \in L^{\infty}(\mathbb{R})$ and $F \in W^{1,\infty}_{loc}(\mathbb{R})$. Then there exists a unique entropy solution $u \in L^{\infty}(\mathbb{R} \times (0,\infty)) \cap C([0,\infty); L^{1}_{loc}(\mathbb{R}))$. Moreover,

(a) for all
$$R > 0$$
 and $L_F := \text{ess sup } |F'|$,
$$\int_{|x| < R} |u(x, t) - v(x, t)| \, \mathrm{d}x \le \int_{|x| < R + L_F t} |u_0(x) - v_0(x)| \, \mathrm{d}x;$$

(b) if, in addition, $u_0 \in L^1(\mathbb{R})$ (and hence $u \in L^{\infty}(\mathbb{R} \times (0, \infty)) \cap C([0, \infty); L^1(\mathbb{R})))$, then

$$||u(\cdot,t)-v(\cdot,t)||_{L^1} \leq ||u_0-v_0||_{L^1}.$$

Is it possible to get a pure L^1 -theory for (SCL)?

- Mild solutions
- Renormalized solutions
- Kinetic solutions

Is it possible to get a pure L^1 -theory for (SCL)?

- Mild solutions
- Renormalized solutions
- Kinetic solutions

Microscopic level/Boltzmann equation

$$(\mathsf{B}_{\varepsilon}) \qquad \qquad \partial_t f_{\varepsilon} + \xi \partial_x f_{\varepsilon} = \frac{1}{\varepsilon} Q(f_{\varepsilon}, f_{\varepsilon})$$

Microscopic level/"Boltzmann equation"

$$(\mathsf{B}'_{\varepsilon}) \qquad \qquad \partial_t f_{\varepsilon} + F'(\xi) \partial_x f_{\varepsilon} = \frac{1}{\varepsilon} (\chi(\xi; u_{\varepsilon}) - f_{\varepsilon})$$

where

$$u_{\varepsilon}(x,t) = \int_{\mathbb{R}} f_{\varepsilon}(x,t,\xi) \,\mathrm{d}\xi$$

and

$$\chi(\xi;u_arepsilon):=egin{cases} 1,&0<\xi< u_arepsilon,\ -1,&u_arepsilo<\xi< 0,\ 0,&(u_arepsilon-\xi)\xi\leq 0. \end{cases}$$

Macroscopic level/Linear equation

(B')
$$\partial_t \chi(\xi; u) + F'(\xi) \partial_x \chi(\xi; u) = \partial_\xi m(x, t, \xi)$$

where

m is a nonnegative measure

and

$$\lim_{\varepsilon\to 0^+} u_{\varepsilon}(x,t) =: u(x,t) = \int_{\mathbb{R}} \chi(\xi;u) \,\mathrm{d}\xi.$$

Entropy solutions revisited

Definition (2' Entropy solutions)

Assume $u_0 \in L^{\infty}(\mathbb{R})$ and $F \in W^{1,\infty}_{loc}(\mathbb{R})$. A function $u \in L^{\infty}(\mathbb{R} \times (0,\infty))$ is called an entropy solution of (SCL) if for all entropy-entropy flux pairs (η, q) , we have

$$\partial_t \eta(u) + \partial_x q(u) = -\int_{\mathbb{R}} \eta''(\xi) m \,\mathrm{d}\xi \ (\leq 0) \quad \mathrm{in} \quad \mathcal{D}'_+(\mathbb{R} \times [0,\infty)).$$

Recall that every nonnegative distribution defines a nonnegative Radon measure.

Definition of kinetic solutions

Definition (3 Kinetic solutions)

Assume $u_0 \in L^1(\mathbb{R})$ and $F' \in L^{\infty}_{loc}(\mathbb{R})$. A function $f = f(x, t, \xi)$ in $L^{\infty}_t((0, \infty); L^1_{x,\xi}(\mathbb{R}^2))$ is called a generalized kinetic solution of (SCL) if $\begin{cases} \partial_t f + F'(\xi)\partial_x f = \partial_\xi m & \text{in} \quad \mathbb{R} \times (0, \infty) \\ f(x, 0, \xi) = \chi(\xi; u_0(x)) & \text{on} \quad \mathbb{R} \end{cases}$

holds in $\mathcal{D}'(\mathbb{R} \times [0,\infty) \times \mathbb{R})$ for some measure $m \ge 0$, and for some function $\mu(\xi)$ and some measure $\nu \ge 0$, we have

$$\int_0^\infty \int_{\mathbb{R}} m(\,\mathrm{d} x,\,\mathrm{d} t,\xi) \leq \mu(\xi) \in L_0^\infty(\mathbb{R}),$$

 $|f(x,t,\xi)| = \operatorname{sign}(\xi)f(x,t,\xi) \leq 1, \quad \operatorname{and} \quad \partial_{\xi}f = \delta(\xi) - \nu(x,t,\xi).$

Remarks on the definition

- Equivalence of entropy and kinetic solutions.
 - For an $L^1 \cap L^\infty$ entropy solution u of (SCL), the function $f(x, t, \xi) = \chi(\xi; u(x, t))$ is a generalized kinetic solution, that is, u is a kinetic solution.
 - If the equation in the definition of kinetic solutions holds for $f(x, t, \xi) = \chi(\xi; u(x, t))$ with $u \in L^1 \cap L^\infty$, then u is an entropy solution of (SCL).
 - Kinetic solutions thus extends, in *L*¹, entropy solutions, and they coincide for bounded solutions.
- There exists a kinetic solution $u \in C([0,\infty); L^1(\mathbb{R}))$ of (SCL) under the assumptions $u_0 \in L^1, F' \in L^{\infty}_{loc}$.
- The properties of the function *f* in the definition of kinetic solutions are needed to properly characterize limits of sequences χ(ξ; u_ε(x, t)).

Uniqueness

Theorem (Perthame, 2002)

Assume $u_0 \in L^1(\mathbb{R})$ and $F' \in L^{\infty}_{loc}(\mathbb{R})$. Let $f = f(x, t, \xi)$ be a generalized kinetic solution of (SCL). Then we have

(a)
$$f(x, t, \xi) = \chi(\xi; u(x, t))$$
 a.e. and $u(x, t)$ is a kinetic solution of (SCL);

(b)
$$f(x, t, \xi) \rightarrow \chi(\xi; u_0(x))$$
 in $L^1(\mathbb{R}^2_{x,\xi})$ as $t \rightarrow 0^+$; and

(c)
$$\|u(\cdot,t)-v(\cdot,t)\|_{L^1} \leq \|u_0-v_0\|_{L^1}$$
.

$$\chi_{u} = \begin{cases} 1, & 0 < \xi < u \\ -1, & u < \xi < 0 \\ 0, & (u - \xi)\xi \le 0 \end{cases}$$
$$\chi_{u} - \chi_{v} = \begin{cases} 1, & v < \xi < u \\ -1, & u < \xi < v \\ 0, & \text{otherwise} \end{cases}$$

$$\chi_{u} = \begin{cases} 1, & 0 < \xi < u \\ -1, & u < \xi < 0 \\ 0, & (u - \xi)\xi \le 0 \end{cases}$$
$$|\chi_{u} - \chi_{v}| = \begin{cases} 1, & v < \xi < u \\ 1, & u < \xi < v \\ 0, & \text{otherwise} \end{cases}$$

$$\chi_{u} = \begin{cases} 1, & 0 < \xi < u \\ -1, & u < \xi < 0 \\ 0, & (u - \xi)\xi \le 0 \end{cases}$$
$$|\chi_{u} - \chi_{v}| = \mathbf{1}_{v < \xi < u} + \mathbf{1}_{u < \xi < v}$$
$$\implies \int_{\mathbb{R}} |\chi_{u} - \chi_{v}| \, \mathrm{d}\xi = |u - v|$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}} |u - v| \,\mathrm{d}x \le 0 \iff \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}} \int_{\mathbb{R}} |\chi_u - \chi_v| \,\mathrm{d}\xi \,\mathrm{d}x \le 0$$
$$\iff \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}} \int_{\mathbb{R}} |\chi_u| + |\chi_v| - 2\chi_u \chi_v \,\mathrm{d}\xi \,\mathrm{d}x \le 0$$