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Nonlinear partial differential equations

All happy families resemble one another, but each unhappy
family is unhappy in its own way.

— Tolstoy, Anna Karenina
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Nonlinear partial differential equations

In contrast to the well-understood (and well-studied) classes of
linear partial differential equations, each nonlinear equation
presents its own particular difficulties.

— Holden & Risebro, Front Tracking for Hyperbolic Conservation Laws
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Scalar conservation laws

Consider the Cauchy problem

(SCL)

{
∂tu + ∂x(F (u)) = 0 in R× (0,∞),

u(x , 0) = u0(x) on R,

where
F , u0 : R→ R

are functions to be determined.
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Why do we study (SCL)?

d
dt

ˆ x2

x1

u(x , t) dx = F (u(x1, t))− F (u(x2, t))
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What do we want from a solution? Classical well-posedness

Mathematical models of physical phenomena should have properties
such that

a solution exists;
the solution is unique; and
the solution’s behaviour changes continuously with the initial
conditions.
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Definition of classical solutions

Definition (0 Classical solutions)

Assume u0 ∈ C 1(R) and F ∈ C 1(R). A function
u ∈ C 1(R× [0,∞)) is called a classical solution of (SCL) if it
satisfies the problem pointwise everywhere.
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Do classical solutions exist?

Method of characteristics: t = t(ξ, η), x = x(ξ, η), z = z(ξ, η){
∂ξt = 1, ∂ξx = u, ∂ξz = 0
t(0, η) = 0, x(0, η) = η, z(0, η) = u0(η)

u(x , t) = z(ξ(x , t), η(x , t))

Implicit function theorem yields u′0(η)t + 1 6= 0 ⇐= u′0 ≥ 0.

t∗ = − 1
u′0(x̃)
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Definition of distributional solutions

Definition (1 Distributional solutions)

Assume u0 ∈ L1
loc(R) and F ∈W 1,∞

loc (R). A function
u ∈ L1

loc(R× (0,∞)) is called a distributional solution of (SCL) if

∂tu + ∂xF (u) = 0 in D′(R× [0,∞)).

¨
R×(0,∞)

u∂tφ+ F (u)∂xφ dx dt = 0 ∀φ ∈ C∞c (R× (0,∞))

x ′(t)(ul − ur ) = Fl − Fr where x(t) is a shock wave

Jørgen Endal What is a solution of a PDE?



Motivation and applications of the equation
Classical solutions

Method of characteristics
Distributional solutions

Entropy solutions
Kinetic solutions

Nonuniqueness

Consider (SCL) with F (u) = 1
2u

2 with the initial data

u0(x) =

{
1, x < 0,
−1, x > 0.

For each α ≥ 1,

u(x , t) =


1, 2x < (1− α)t,
−α, (1− α)t < 2x < 0,
α, 0 < 2x < (α− 1)t,
−1, (α− 1)t < 2x ,

is a distributional solution.
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Nonuniqueness
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Too many solutions
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Too many solutions
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Definition of entropy solutions

Definition (2 Entropy solutions)

Assume u0 ∈ L∞(R) and F ∈W 1,∞
loc (R). A function

u ∈ L∞(R× (0,∞)) is called an entropy solution of (SCL) if for all
entropy-entropy flux pairs (η, q), we have

∂tη(u) + ∂xq(u) ≤ 0 in D′+(R× [0,∞)).

Enough to take

η(u) = |u − k | and q(u) = sign(u − k)(F (u)− F (k))

for all k ∈ R.
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Uniqueness

Theorem (Kružkov, 1970)

Assume u0 ∈ L∞(R) and F ∈W 1,∞
loc (R). Then there exists a

unique entropy solution u ∈ L∞(R× (0,∞)) ∩ C ([0,∞); L1
loc(R)).

Moreover,
(a) for all R > 0 and LF := ess sup |F ′|,

ˆ
|x |<R

|u(x , t)− v(x , t)| dx ≤
ˆ
|x |<R+LF t

|u0(x)− v0(x)| dx ;

(b) if, in addition, u0 ∈ L1(R) (and hence
u ∈ L∞(R× (0,∞)) ∩ C ([0,∞); L1(R))), then

‖u(·, t)− v(·, t)‖L1 ≤ ‖u0 − v0‖L1 .
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Is it possible to get a pure L1-theory for (SCL)?

Mild solutions
Renormalized solutions
Kinetic solutions
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Microscopic level/Boltzmann equation

(Bε) ∂t fε + ξ∂x fε =
1
ε
Q(fε, fε)
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Microscopic level/“Boltzmann equation”

(B′ε) ∂t fε + F ′(ξ)∂x fε =
1
ε
(χ(ξ; uε)− fε)

where
uε(x , t) =

ˆ
R
fε(x , t, ξ) dξ

and

χ(ξ; uε) :=


1, 0 < ξ < uε,

−1, uε < ξ < 0,
0, (uε − ξ)ξ ≤ 0.
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Macroscopic level/Linear equation

(B′) ∂tχ(ξ; u) + F ′(ξ)∂xχ(ξ; u) = ∂ξm(x , t, ξ)

where
m is a nonnegative measure

and
lim
ε→0+

uε(x , t) =: u(x , t) =

ˆ
R
χ(ξ; u) dξ.
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Entropy solutions revisited

Definition (2’ Entropy solutions)

Assume u0 ∈ L∞(R) and F ∈W 1,∞
loc (R). A function

u ∈ L∞(R× (0,∞)) is called an entropy solution of (SCL) if for all
entropy-entropy flux pairs (η, q), we have

∂tη(u) + ∂xq(u) = −
ˆ
R
η′′(ξ)m dξ (≤ 0) in D′+(R× [0,∞)).

Recall that every nonnegative distribution defines a nonnegative
Radon measure.
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Definition of kinetic solutions

Definition (3 Kinetic solutions)

Assume u0 ∈ L1(R) and F ′ ∈ L∞loc(R). A function f = f (x , t, ξ) in
L∞t ((0,∞); L1

x ,ξ(R2)) is called a generalized kinetic solution of
(SCL) if {

∂t f + F ′(ξ)∂x f = ∂ξm in R× (0,∞)

f (x , 0, ξ) = χ(ξ; u0(x)) on R

holds in D′(R× [0,∞)× R) for some measure m ≥ 0, and for
some function µ(ξ) and some measure ν ≥ 0, we haveˆ ∞

0

ˆ
R
m( dx , dt, ξ) ≤ µ(ξ) ∈ L∞0 (R),

|f (x , t, ξ)| = sign(ξ)f (x , t, ξ) ≤ 1, and ∂ξf = δ(ξ)− ν(x , t, ξ).
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Remarks on the definition

Equivalence of entropy and kinetic solutions.
For an L1 ∩ L∞ entropy solution u of (SCL), the function
f (x , t, ξ) = χ(ξ; u(x , t)) is a generalized kinetic solution, that
is, u is a kinetic solution.
If the equation in the definition of kinetic solutions holds for
f (x , t, ξ) = χ(ξ; u(x , t)) with u ∈ L1 ∩ L∞, then u is an
entropy solution of (SCL).
Kinetic solutions thus extends, in L1, entropy solutions, and
they coincide for bounded solutions.

There exists a kinetic solution u ∈ C ([0,∞); L1(R)) of (SCL)
under the assumptions u0 ∈ L1,F ′ ∈ L∞loc.
The properties of the function f in the definition of kinetic
solutions are needed to properly characterize limits of
sequences χ(ξ; uε(x , t)).
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Uniqueness

Theorem (Perthame, 2002)

Assume u0 ∈ L1(R) and F ′ ∈ L∞loc(R). Let f = f (x , t, ξ) be a
generalized kinetic solution of (SCL). Then we have
(a) f (x , t, ξ) = χ(ξ; u(x , t)) a.e. and u(x , t) is a kinetic solution of

(SCL);
(b) f (x , t, ξ)→ χ(ξ; u0(x)) in L1(R2

x ,ξ) as t → 0+; and
(c) ‖u(·, t)− v(·, t)‖L1 ≤ ‖u0 − v0‖L1 .
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Proof of uniqueness

χu =


1, 0 < ξ < u

−1, u < ξ < 0
0, (u − ξ)ξ ≤ 0

χu − χv =


1, v < ξ < u

−1, u < ξ < v

0, otherwise
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Proof of uniqueness

χu =


1, 0 < ξ < u

−1, u < ξ < 0
0, (u − ξ)ξ ≤ 0

|χu − χv | = 1v<ξ<u + 1u<ξ<v

=⇒
ˆ
R
|χu − χv | dξ = |u − v |
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Proof of uniqueness

d
dt

ˆ
R
|u − v | dx ≤ 0 ⇐⇒ d

dt

ˆ
R

ˆ
R
|χu − χv | dξ dx ≤ 0

⇐⇒ d
dt

ˆ
R

ˆ
R
|χu|+ |χv | − 2χuχv dξ dx ≤ 0

Jørgen Endal What is a solution of a PDE?


	Motivation and applications of the equation
	Classical solutions
	Method of characteristics
	Distributional solutions
	Entropy solutions
	Kinetic solutions



